Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан хлористый, раствор

    При восстановлении комплексных хлоридов рутения (III) и рутения (IV) в кислой среде сероводородом, амальгамой нат- рия, хлористым титаном, хлористым хромом, цинком в соляной —. кислоте, гипофосфитом натрия а также при электролитическом восстановлении образуются синие растворы, в которых рутений ГХ находится в виде соединения рутения (II). Если концентрация соляной кислоты в растворе ниже 2N, синие соединения разлагаются с образованием металлического рутения и соединения рутения (III). [c.17]


    ТАНТАЛ ПЯТИХЛОРИСТЫЙ ТИТАН ЧЕТЫРЕХХЛОРИСТЫЙ ЦИНК ХЛОРИСТЫЙ, раствор ЦИНК ХЛОРИСТЫЙ, твердый [c.181]

    Несколько замечаний об электролитическом получении никеля с нерастворимым анодом. Из обзора электрохимических свойств никеля ( 2—7) видно, что 10—15 г/л являются предельным содержанием кислоты в растворе, при котором можно получать никель с более или менее высоким выходом по току. Поэтому электролитическое получение никеля с нерастворимым анодом осуществимо только при условии надежного диафрагмирования анода либо при непрерывной нейтрализации раствора закисью или карбонатом иикеля. Едва ли это экономически целесообразно ввиду значительного расхода щелочей. Однако применение концентрированных растворов хлористого никеля позволяет вести электролиз с нерастворимым анодом (графит или платинированный титан). При этом можно использовать аноды с коробками для собирания и отвода газообразного хлора и диафрагмы из пористого перхлорвинила. Электролит — проточный. [c.389]

    Титан стоек в растворах всех хлоридов при различных концентрациях за исключением концентрированных растворов хлористого алюминия, в которых происходит сильный кислотный гидролиз с образованием соляной кислоты. [c.192]

    Аппаратуру для переработки растворов, содержащих хлористый аммоний, изготовляют из кислотоупорных материалов. Из металлов (и сплавов) наиболее стойким в кипящих растворах является титан 2 . Сушку хлористого аммония ведут при температурах не выше 70° во избежание его диссоциации. [c.508]

    МИН., после чего удаляют ион трехвалентного железа осторожным прибавлением раствора хлористого титана до исчезновения яркорозовой окраски. Оттянутый конец бюретки должен находиться в колбе. Затем подготовленный раствор смешивают с 25 ли анализируемого стирола и оставляют стоять в течение 2 час., причем любая перекись окисляет ион двухвалентного железа в ион трехвалентного. Розовую окраску оттитровывают хлористым титаном и трехвалентное железо пересчитывают на перекись водорода. [c.166]

    Bi+3Ti . Для предотвращения осаждения хлорокиси висмута из слабосолянокислого раствора прибавляют хлористый натрий. В сильнокислом растворе трехвалентный титан не восстанавливает висмута [797, 1388]. [c.263]

    В ш елочах, растворах гипохлоритов, морской воде, растворах почти всех хлористых солей, а также в атмосфере влажного хлора титан обладает высокой коррозионной стойкостью. [c.109]


    Анодами при электролизе хлоридов с нерастворимым анодом служат графитовые стержии либо платинированный титан. Поскольку в хлористом растворе имеется значительное количество хлористого аммония, а анодном пространстве наравне с выделяющимся хлором разлагается NH4 I по реакции [c.507]

    Источник ошибок прн этом определении заключается в лсту-честй нитросоединений с водяным паром при кипячении реакционной смесн и в частично имеющем место хлорировании. Во избежание этих недостатков рекомендуется 26 проводить реакцию в колбе с обратным холодильником и применять сернокислый титан Восстановительный раствор содержит около 1% хлористого титана и около 5% сернокислого титана (Кнехт и Хибберт пользовались [c.415]

    Описанным методом было получено более 50 партий титаната бария. В качестве исходного сырья использовались при этом следующие соединения безводный дистилляционный четыреххлористый титан, получаемый в качестве промежуточного продукта в производстве титаиа хлористый барий и углекислый аммоний имели квалификацию чистый . Полученные на таком сырье образцы титаната бария анализировались на содержание основных комионентов и нримесей. Пробы титаната бария растворялись в соляной кислоте, после чего титан в растворах определялся окси-диметрически, титрованием бихроматом калия, а барий — трплонометри-чески, после отделения титана экстракцией его купфероната. Точность определения титана составляла 0.5%, а бария +0.8% (абсолютных). Следует отметить, что все образцы не содержали свободных окислов бария и титана, что проверялось фазовым анализом [ ]. Содержание примесей в титанате бария определялось спектральным методом. [c.278]

    Нитросоединения, как ароматические, так и алифатические, восстанавливались электрохимически до аминов в большом числе случаев с выходами 53—100% [68— 70]. Лучшие выходы метил--и-аминобензоата [69], 93—95%, получены каталитическим путем 177]. Католитами чаще всего служили водные или водно-спиртовые растворы серной и соляной кислот. В большинстве реакций добавлялись промоторы хлорная медь, хлористый титан, хлористое олово, молибденовая кислота и ванадилсульфат. Концентрация кислоты не должна быть слишком высокой, иначе будет происходить перегруппировка промежуточного фенилгидроксиламина в п-аминофенол или его производные. Применялись с.чедующие катоды никель (пластинка, проволока, сетка), <винец, свинцовое гальванопокрытие, медь (пластинка, сетка), ртуть и уголь (плотный или пористый). Нитрогруппа восстанавливается легко, и в случае некоторых соединений, содержа-ш их наряду с нитрогрупной еще и другую способную к восстановлению группу, оказалось возможным получать амины с невосстановленной второй группой, при условии, если пропускать электричество в количестве, недостаточном для восстановления обеих групп. Так, нитрогруппа восстанавливалась в предпочтение к арсоногруппе, к карбоксилу в ароматических сложных эфирах и к пиридиновому кольцу. [c.29]

    Парогазовую смесь конденсируют и полученный тетрахлорид титана очищают разгонкой, после чего он восстанавливается магнием в реакторах пр,и температуре 800—900°. Получающийся в процессе восстановления хлористый магний периодически удаляют из раствора, а реакционная маеса (губчатый титан, хлористый магний и остаточный металлический магний) проходит операцию вакуумной сепарации, в процессе которой металлический титан отделяется от магния. [c.335]

    В некоторых случаях титан склонен к межкристаллитной коррозии. Так, наблюдалось межкристаллитное разрушение сварных соединений титана в сернокислом растворе (12—187о серной кислоты), насыщенном сернистым газом с примесями мышьяка, двуокиси селена и окиси железа, — металл шва и зона термического влияния сварного соединения подвергались межкристаллитной коррозии. Межкристаллитное растрескивание титана наблюдалось в красной дымящей азотной кислоте, растворах брома в метиловом спирте и в их парах. Имеются сведения о коррозионном растрескивании титана в расплавленном кадмии, в хлорированных углеводородах, а также в воздушной среде при 260° С, когда на поверхности титана имелись сухие кристаллы хлористого натрия. [c.278]

    Перспективным способом защиты стальных насосно-компрессорных труб от водородного охрупчивания в условиях сероводородсодержащих нефте- и газопромысловых сред могут стать гальванические титановые покрытия. Как показали исследования [19], после закалки стали Д с 880 °С и отпуска при 400—500 °С образцы с тг[тановым покрытием толщиной 50 мкм, полученным нз расплавленного хлористого электролита, при катодном наводороживании ( к = 100 А/м ) в растворе 0,05н. H2S04+0,01 кг/м= ЗеОг и температуре 25°С не давали трещины при напряжении в условиях изгиба 0,955(Тт за 10 ч, в то время как нетитанированные образцы разрущались за 5—10 мин. Защитные свойства титанового покрытия против водородного охрупчивания авторы объясняют низким коэффициентом диффузии водорода в титане в условиях образования его гидрида, а также обеднением углеродом и повышением пластичности слоя стали, прилегающего к титановому покрытию. [c.137]


    Л1Л смеси хлористый титан (IV) — изонентан лередав-ливают инертным газом из сосуда Шленка в мерную колбу емкостью 200—500 мл. Погружают колбу в горячую воду для испарения изопентана. После испарения изапентана колбу охлаждают до комнатной температуры и доводят до метки ее содержимое соляной кислотой(1 1). Отбирают 10 мл полученного раствора в коническую колбу на 250—300 мл, добавляют 3,5—4 г гранулированного цинка и 10 мл концентрированной соляной кислоты. После окончания видимой реакции цинка с соляной кислотой приливают 5 мл бензола, затем 5—10 мл раствора РеСЬ (до желтой окраски, указывающей на избыток РеСЬ), 50 мл насыщенного раствора NaaHP04, 50 мл дистиллированной воды, несколько капель дифениламина и титруют 0,05 н. раствором КгСггО до синефиолетовой окраски. [c.226]

    Для восстановления железа следует применять висмутовый редуктор или висмутовую амальгаму,так как в растворе присутствует титан более энергичные воссано-вители (кадмий, цинк) восстанавливают не только железо, но также титан. При йодометрическом определении железа, а также прп восстановлении хлористым оловом, присутствие титана не имеет значения. [c.467]

    Раствор ЫзгЗгОз нужно сохранять в закупоренных и защищенных от света склянках. Окисление триосульфата кислородом воздуха идет очень медленно в отличие от растворов таких восстановителей, как хлористый титан и хлористое олово. Однако тиосульфат натрия имеет ряд недостатков даже слабые кислоты, например угольная, медленно разлагают его  [c.406]

    Щелочные растворы применяют главным образом при нанесении покрытий на коррозионно стойкую сталь атюмнний титан, магний, различные неметаллы а также при необходимости осаждения многокомпонентных покрытий (сплавов) на основе никеля или кобальта (например никель кобальт-фосфорных или кобальт вольфрам фосфорных и других покрытий) При корректировании щелочные растворы могут работать длительное время благодаря наличию в их составе комплексообразователей (таких как лимоннокислый натрии и аммиак) Но в результате регулярного добавления гипофосфита в ванне >астет концентрация фосфитов Добавка хлористого никеля и аммиака увеличивает концентрацию хлористого аммония что нежелательно Так, в растворе при 8—9 следующего состава (г/л) хлористый никель 45 гипофосфит натрия 20 хлористый аммоний 45 лимоннокислый натрий 45 максимальная [c.24]

    Определение о-нитрофенола в дестилляте производили т е-трованием хлористым титаном. В остатке от перегонки с вот дяшлм паром определяли п-нитрофенол и побочные продукты нитрования при выщелачивании остатка водой в раствор переходил п-нитрофенол, не растворимый в воде побочный продукт нитрования отделяли от п-нитрофенола фильтрованием. Этот побочный продукт при исследовании оказался продуктом окисления индофенола. Как предполагает Вайбель, индофенол мог образоваться в результате конденсации одной молекулы [c.99]

    Меркаптаны способны присоединяться к различным веществам. Этантиол образует гидрат СаНдЗН-18Н2О, стабильный при низких температурах. В литературе имеются сообщения об образовании комплексных продуктов с хлористым алюминием, четыреххлористым титаном, фтористым бором, фтористоводородной кислотой, окисью азота и мочевиной (продукты соединения с мочевиной дают только производные нормального строения). На свету этантиол разлагается на этилдисульфид, водород, этилен и высшие алкены. В водных растворах тиол под действием рентгеновских, бета- и гамма-лучей обычно превращается в дисульфид. Термическое разложение первичных и вторичных тиолов, легко протекающее при температуре выше [c.269]

    Описан ряд случаев проведения реакции с различными восстановителями и при различных экспериментальных условиях. Согласно наблюдениям, которые провели Слотта и Кетур (128,137], совершенно безводное хлористое олово не растворяется в эфире, насыщенном хлористым водородом эти исследователи получали очень высокие выходы альдегидов (80—90%), применяя препараты хлористого олова, содержащие 1,4—1,5% воды. Виттиг и Хартман [129], с успехом иопользовавшие бромистое олово [129] (см. выше), пробовали применять также двухлористый хром, треххлористый ванадий и треххлористый титан. Однако все эти препараты оказались неактивными. [c.318]

    Хорошим методом количественного определения нитрогруппы, так же как азогруппы, является метод титрования хлористым титаном 55). Нитросоединения восстанавливаются в кислом растворе (концентрированная соляндя кислота) посредством горячего титрованного раствора Ti lз, титр которого устанавливается посредством раст юра соли окиси железа, определенного содержания (из железноаммиачных квасцов) индикатором служит роданистый калий. Восстановление производится в токе СОа и протекает быстро по уравнению  [c.61]

    Полимеры простых виниловых эфиров. Процесс полимеризации простых виниловых афиров протекает при температуре, близкой к температуре кипения взятого эфира. В качестве катализатора используют раствор хлорного железа в бутиловом спирте. Могут применяться н катализаторы типа Фриделя-Крафтса хлористый алюминий, хлористый титан, фтористый бор и др. Реакция ироте- [c.285]

    Изучение катодной поляризации платинового катода (анод титановый) при электролизе растворов четыреххлористого титана в ДМСО и алифатических спиртах и их смесях с ДМСО и ароматическими углеводородами, в простых и сложных эфирах, амидах, НМ, АН, хлористых ацетиле и тиониле, ГМФТА, ПК показывает, что из большинства этих растворителей титан не восстанавливается. Природа процесса восстановления титана из растворов Т1С14 в ДМСО и его смесях с этанолом не ясна. Возможно, что выделение титана на платиновом катоде в виде цветных пленок является вторичным химическим процессом [294, 686]. [c.93]

    Используя восстановление трехвалентного железа с помощью титрования хлористым титаном, Вагнер, Смит и Петерсобычно получали заниженные значения однако при проведении анализа в токе двуокиси углерода и тщательном вытеснении воздуха результаты анализа были более точными. Кольтгоф и Меда-лпа обнаружили, что при анализе растворов чистых перекисей в отсутствие воздуха результаты, как правило, были заниженными и давали расхождения, хотя данные анализа окисл ных жиров были близки к полученным с помощью рассматривае мого ниже иодометрического метода. Эти исследователи считали, что природа растворителя оказывает большое влияние на точность определения. Применение растворителей, вызывающих индуцированное разложение перекисей, приводит к пониженным значениям, в то время как ацетон, который почти полностью [c.427]

    Восстановление хлористым оловом и соляной кислотой имеет большое значение для установления строения азокрасителей. Для большинства азокрасителей реакция состоит в расщеплении азогруппы и в образовании двух молекул первичного амина. Для проведения реакции к теплому водному раствору красителя прибавляют хлористое олово в концентрированной соляной кислоте. По обесцвечивании раствора выделяют продукты реакции ло одному из обычных способов, наиболее пригодному в том или ином случае, а именно перегонкой с паром, фильтрованием, экстрагированием эфиром или превращением в производные хиноксалина К другим восстановителям, пригодным для этой реакции, относятся цинковая пыль и водный аммиак, цинковая пыль и водный раствор едкого натра, хлористый титан. [c.464]

    III) содержание серной кислоты должно быть не менее 33%. Хускенс и Гати восстановили перхлорат калия в атмосфере инертного газа титрованным раствором хлористого титана (III) в б н. соляной кислоте избыток хлористого титана оттитровывали раствором сернокислого железа (II). Шнелл- восстановил перхлорат трехвалентным титаном в серной кислоте при нагрева-П1П с обратным холодильником для восстановления четырехвалентного титана по мере его образования добавляли алюминий образовавшийся хлорид оттитровывали азотнокислым серебром. Иглс восстановил перхлорат калия титрованным раствором хлористого титана (III) при трехминутном кипячении в атмосфере двуокиси углерода обратное титрование избыточного нона производилось двойной солью сернокислых церия и аммония e(S0,)2 2(NH,),S04 2Н,0. [c.109]

    В качестве примера могут быть приведены исследования Б. П. Живописцева и Л. А. Минина [8], касающиеся анализа такой части встречающейся группы элементов, как железо, титан, алюминий, хром. Если провести предварительное окисление хрома до хромата, то, как только что было указано, хром можно отделить от других элементов в слабосернокислом растворе в присутствии небольших количеств хлористого натрия. После отделения [c.139]

    Окислительно-восстановительная система Ti (IV)—Ti (III) в бромистоводородной кислоте полярографическим методом пока не изучена. Необходимый для работы четырехбромистый титан получался путем добавления Ti U к 50-процентному раствору бромистоводородной кислоты при нагревании на водяной бане для удаления образовавшегося хлористого водорода. По мере выпаривания раствора добавлялась бромистоводородная кислота. В этом случае были проведены две серии опытов по изучению влияния концентрации бромистоводородной кислоты и бромистого калия на анодно-катодные волны титана. Провести все пять серий опытов, как было в случае хлоридов, не удалось. Трехвалентный бромистый титан очень легко окисляется, и анодные волны получались не при всех исследованных концентрациях. [c.319]


Смотреть страницы где упоминается термин Титан хлористый, раствор: [c.42]    [c.64]    [c.19]    [c.42]    [c.139]    [c.214]    [c.137]    [c.164]    [c.529]    [c.743]    [c.593]    [c.236]    [c.236]    [c.26]    [c.408]   
Основные процессы синтеза красителей (1952) -- [ c.347 ]

Основные процессы синтеза красителей (1957) -- [ c.347 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие пятихлористых ниобия и тантала с хлористым натрием в растворе четыреххлористого титана

Титан хлористый, приготовление стандартного раствора



© 2025 chem21.info Реклама на сайте