Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Колебательные и вращательные

    При возбуждении молекулы в ней происходят сложные энергетические изменения (рис. 89) электроны переходят с одного уровня на другой, одновременно изменяется и система возможных колебательных и вращательных уровней. Это усложняет спектр и образует ту характерную структуру полосатых спектров, которая резко отличает молекулярные спектры от линейчатых спектров атомов. [c.144]


    Тем не менее известны случаи, когда переходами между электронными состояниями в известном приближении моншо пренебречь и рассматривать превращения колебательной и вращательной энергии в поступательную в рамках представлений, справедливых для основного электронного состояния. [c.101]

    Спектры молекул значительно сложнее, чем спектры атомов, и состоят не из отдельных линий (см. рис. 6), а из полос (рис. 88). Сложность молекулярных спектров обусловлена тем, что в молекуле наряду с движением электронов относительно ядер происходит колебательное движение самих ядер и вращательное движение молекулы как целого. Этим трем видам движения — квантовым переходам — соответствуют электронный, колебательный и вращательный спектры (см. табл. И). [c.143]

    Ионизирующее излучение (гамма- и рентгеновские лучи) обладает такой энергией, что способно выбить из молекулы электроны с образованием ионов. Инфракрасное излучение обладает низкой энергией и при взаимодействии с молекулами вызывает колебательные и вращательные эффекты. Электромагнитное излучение в близкой ультрафиолетовой и видимой областях спектра (240—700 нм) взаимодействует с электронами молекулы. Ниже 240 нм ультрафиолетовый участок спектра задерживается озоном иа уровне 20—30 км от Земли. При поглощении света с длиной волны менее 800 нм изменяется электронная, вращательная и колебательная энергия молекул, что приводит к возбужденному состоянию молекул. [c.26]

    На рис. 13-32 показана обобщенная диаграмма энергетических уровней произвольной молекулы. На ней изображены два электронных уровня, Еу и 2, а также относящиеся к ним колебательные и вращательные уровни. Обычно расстояния между электронными энергетическими уровнями намного превышают расстояние между колебательными уровнями, которые в свою очередь намного больше расстояний между вращательными уровнями. Электронные переходы молекулы (т. е. переходы с одного электронного уровня на другой) соответствуют поглощению или испусканию электромагнитного излучения в видимой и ультрафиолетовой частях спектра колебательные переходы соответствуют поглощению или испусканию излучения в ближней инфракрасной и инфракрасной областях спектра, вращательные переходы отвечают поглощению или испусканию излучения в дальней инфракрасной и более длинноволновых, вплоть до микроволновой, областях электромагнитного спектра. [c.585]


Рис. 89. Схема электронных, колебательных и вращательных энергетических уровней двухатомной молекулы Рис. 89. <a href="/info/480291">Схема электронных</a>, колебательных и <a href="/info/3559">вращательных энергетических</a> уровней двухатомной молекулы
    Энергия электронного возбуждения значительно больше энергии колебательного и вращательного движения, поэтому прн электронном возбуждении происходит возбуждение и колебательного, и вращательного движения. В спектре наблюдается сложная полоса, которую можно объяснить переходами между колебательно-вращательными уровнями нормального и возбужденного электронного состояний (рис. 8). [c.13]

    Хотя эти движения взаимосвязаны, можно приближенно рассматривать их как независимые и считать энергию молекулы равной сумме электронной, колебательной и вращательной энергий  [c.44]

    О (обш ую) можно представить как произведение внутренних электронной, колебательной и вращательной сумм по состояниям  [c.221]

    Последнее из этих допущений, по-видимому, наименее ошибочно. Обычное допущение о равенстве трансмиссионного коэффициента единице также не должно быть серьезным источником ошибок. Что касается данных о структурных параметрах и колебательных частотах, то по отношению к комплексу они являются чисто гипотетическими и становятся все менее надежными по мере увеличения числа атомов в комплексе. Однако, как будет показано далее, ввиду относительно малого вклада колебательного и вращательного движения в функцию распределения, ошибки, вероятнее всего, находятся в пределах множителя 10 или в крайнем случае 100. Наконец, допущение об универсальном частотном факторе кТ/к для распада комплекса может давать ошибку около одного порядка. [c.252]

    Одна пз главных трудностей, связанных с предложенными ранее методами вычисления предэкспоненциальных мно кителей, если не учитывать некоторые нечеткие положения теории переходного состояния, лежит в гипотетическом характере параметров, которые применяются для описания колебательного и вращательного двил ений предполагаемого активированного [c.257]

    Задача вычисления значений энергии, теплоемкостей, энтропии и т. д. сводится по существу к вычислению суммы по состояниям. Экспонент в выражении для Q включает в себя сумму по всем видам молекулярной энергии — поступательной, электронной, колебательной и вращательной. Принимая, что каждая их этих форм энергии не зависит от других, полную сумму по состояниям можно представить в виде произведения сумм по состояниям соответствующих энергий каждого типа [c.308]

    Взаимодействие внешних электронов атомов (или групп атомов) приводит к химической связи между ними. Энергия взаимодействия между атомами в молекуле (т) имеет характерный вид кривой с минимумом, соответствующим энергии диссоциации (рис. 2.4). Энергетические уровни дискретны и имеют электронную колебательную и вращательную составляющие  [c.42]

    Конструкция лазеров на органических красителях отличается от конструкции газовых и твердотельных лазеров. Активное вещество представляет собой органический растворитель (метиловый спирт), в котором растворено небольшое количество красителя, например родамина. Из основного энергетического состояния молекулы вещества после облучения попадают в возбужденное, имеющее вид широкой полосы, содержащей множество колебательных и вращательных уровней. После этого перехода молекулы красителя за очень короткое время совершают безызлучательный переход с выделением тепла на самые нижние уровни этого возбужденного состояния. Таким образом достигается инверсная заселенность между нижними уровнями возбужденного и верхними невозбужденного состояний. [c.100]

    В табл. V, 1 приведены в качестве примера значения функции Н°т — Яо)/ Т однозарядных положительных ионов некоторых элементов при температурах до 50 000 К. При обычных температурах теплоемкость и внутренняя энергия одноатомных частиц не имеют колебательных и вращательных составляющих, а определяются всецело поступательным движением частиц. При высоких же температурах еще прибавляется и энергия возбуждения более высоких энергетических уровней электронов. До начала этих возбуждений теплоемкость (Ср) и функция (Яг — Яо)/Г сохраняют для частиц такого вида постоянное значение 4,9682 кал/(К-моль). Переход от атомов Не к N6, Аг, Кг, Хе и Кп сопровождается понижением первого уровня электронных возбуждений. У нейтральных атомов этот уровень понижается с 21,0 эв для атомов гелия до 6,2 эв для атомов радона Для ионов Ы+ не обнаруживается возбужденных состояний еще при 45 ООО К, для ионов N3+—при 20 000 К, для К и КЬ+ —при 10 000 К и для Сз+ при 9000 К. Аналогичные соотношения должны наблюдаться и для ионов Р , С1 , Вг, 1 и для ионов Ве , Mg +, Са +, Ва +. Для изоэлектронных частиц чем выше заряд ядра, тем выше первый уровень электронных возбуждений и, следовательно, выше температура, при которой эти возбуждения начинают влиять на термодинамические функции. Хотя эффективный заряд таких ионов в [c.173]


    Перейдем теперь к бимолекулярным реакциям между частицами X и У. Положим вначале, что реакция протекает с преодолением активационного барьера и что активированный комплекс ХУ имеет колебательных и вращательных степеней свободы. Пусть, далее, молекулы X и У вместе имеют г вращательных и колебательных степеней свободы. Для простоты положим, что все колебательные суммы состояний одного порядка ол (О /кол и вра- [c.72]

    Превращение колебательной и вращательной эпергии в поступательную [c.100]

    Установлено, что молекулы обладают колебательным спектром, зависящим от конфигурации их ядер и электронов. На основании изучения колебательного и вращательного спектров часто пытаются точно установить детали этой конфигурации. Для малых молекул во многих случаях можно применить точную математическую обработку, дающую значения межъядерных расстояний, сил, действующих между ядрами, и моментов инерции. Это сделано, например, для таких углеводородов, как метан, отан, ацетилен и этилен. [c.317]

    Наиболее высоки кванты энергии, поглощаемые или испускаемые при электронных переходах, затем следуют колебательные кванты и, наконец, самые малые, вращательные. Поэтому электронный переход обычно сопровождается колебательными и вращательными переходами, т. е. представляет собой электронно-колебательно-вращательный [c.142]

    Квант, возбуждающий электронный переход, одновременно вызывает изменения колебательной и вращательной энергий. Соответствующая частота в спектре определяется по формуле [c.166]

    Молекула может поглощать дискретные количества эноргпи в форме тепла иди света вследствие изменений се электронной, колебательной и вращательной энергии. Инфракрасные спектры и спектры комбинационного рассеяния возникают благодаря изменениям колебательКых и вращательных уровней энергин н поэтому должны быть связаны с колебаниями и вращениями основных ядер молекулы. Спектры, наблюдаемые ц ультрафиолетовой п видимой областях, обусловлены изменениями электронной конфигурации молекулы. [c.278]

    Современная теория различает три вида энергетических уровней молекул, соответствующих трем типам внутримолекулярного движения движению электронов, колебательному движению атомов и вращательному движению молекулы в делом. Вообще прсдполоя ение о том, что полная внутренняя энергия аддитивно складывается из электронной, колебательной и вращательной энергий [c.293]

    Молекулы иеш.естиа, находяш,егося в газообразном состоянии, наряду с колебательным движением вращаются. При поглощении квантов света наблюдается изменение энергии колебательного и вращательного движе1шя. Энергия вращательно-колебательного движения равна сумме [c.10]

    Электронные переходы в молекуле определяются ее внутренними движениями, как и в случае атома. При поглощении и излучении молекулами световой энергии, кроме изменения электронного состояния молекулы, происходят изменения колебательного двн>кенця различных частей мо.яекулы и ее вращательного движении в целом. Изменения энергии при электронных переходах имею ] величины, примерно в десять раз превышающие изменения энергии колебательных движений и в тысячу раз превышающие изменения энергии вращательного движения. В соответствии с этш[ электронные переходы чаще всего дают спектры излучения или поглощения в видимой или ультрафиолетовой части спектра. Колебательные и вращательные спектры в соответствии с меньшей величаной изменения энергии проявляются в инфракрасной области На электронные спектры всегда накладывается влияние одновременно происходящих изменений энергии колебательного и вращательного движений, а на колебательные спектры — влияние изменений энергий вращательного движения. В чистом виде проявляются только вращательные спектры (в далекой инфракрасной области). По ним можно вычислить главные моменты инерции молекул и определить их геометрические размеры и конфигурации. [c.91]

    Переходам электронов в молекулах, так же как и в атомах соответствуют энергии в несколько электронвольт соответствующее электронным переходам излучение является видимым и ультрафиолетовым. Переходы электронов сопровождаются изменениями в колебательном и вращательном движении все это отражается иа спектре, который в этом случае показывает совокупность всех видов энергетических изменениГгв молекулах. [c.65]

    Вывод классических уравнений движений из квантовых показывает, что классическая механика применима при условии малости длины волны де-Бройля X по сравнению с характерным размером I об.тасти действия потенциала, в котором движется частица. Из правил квантования следует, что условие к (ШР) <5 эквивалентно условию Пк для связанных состояний системы (колебательное и вращательное движение). Для тепловых энергий Т 1000 К) и молекул среднего атомного веса [М 20) X, составляет величину ппр>[дка К)" см, что заметно меньше размера молекул (3-10 сж). Для этих же условий наиболее вероятные значения вращательных квантовых чисел ] обычно превышают 10, тогда как для колебаний условие 1 к 1. как правило, не выполняется. Таким образом, описание поступательного и вращательного движения молекул в рамках классической механики полностью оправдано. Что касается колебательного движения, то опо может быть описано классически только в случае, когда колебательная энергия заметно превышает величину колебательного кванта, например в случае сильно г1Кзотермнческих реакций. [c.57]

    В более сложных случаях следует учитывать нарушение равновесного распределения по колебательным и вращательным степеням свободы, а иногда — и по поступательным. При этом, как уже отмечалось ранее, следует учитывать то, что соотношение моя ду макроскопическими временами Трел и Треак далеко пе всегда определяет степень нерапповесности системы. Правильный критерий степени нарушения равновесного распределеиия, вызываемого реакцией, формулируется в терминах микроскопических констант скоростей релаксации и реакции, определяющих соотношение между скоростями изменения заселенности заданного квантового состояния реагентов за счет этих двух процессов. Именно поэтому изучение элементарпых констант релаксационных процессов представляет большой интерес для химической кинетики. [c.76]

    Природа взаимодействия столь различающихся по энергии квантов с веществом принципиально неодинакова. Так, излучение уквантов связано с ядерными процессами, излучение квантов в рентгеновском диапазоне обусловлено электронными переходами во внутренних электронных слоях атома, испускание квантов УФ- и видимого излучения или взаимодействие вещества с ними — следствие перехода внешних валентных электронов (сфера оптических методов анализа), поглощение ИК- и микроволновых квантов связано с переходом между колебательными и вращательными уровнями молекул, а излучение в ра-диоволновом диапазоне обусловлено переходами с изменением ориентации спинов электронов или ядер атомов. Для решения разнообразных задач наибольшее значение имеют спектральные методы анализа, оперирующие с излучением рентгеновского, оптического, ИК- и радиоволнового диапазонов. В данном практическом руководстве по физико-химическим методам анализа рассматриваются оптические методы, которые традиционно делятся па оптическую атомную и оптическую молекулярную спектроскопию. В первом случае аналитические сигналы в области спектра от 100 до 800 нм являются следствием электронных переходов в атомах, во втором — в молекулах. [c.7]

    Заметим, что для соударения упругих шаров из-за неблагоприятного соотношения масс доля кинетической энергии электрона, переходящая в колебательную (и вращательную) энергию молекулы, ничтожно мала поэтому с точки зрения этой модели при электронном уд р(1 не должно иметь места ни возбуждение колебаний, пи вращение молекуль. (имеются в виду медленные электроны). Наблюдаемое возбузкдение колебаний указывает па неприменимость простой механической модели к этому процессу. Франк [283] предложил механизм возбуждения колебаний молекулы лри электронном ударе, в основе которого лежит представление о том, что электрон прн сближении с молекулой сильно искажает ее внутреннее поле и тем самым изменяет взаимодействие атомов в молекуле, вследствио чего и может произойти изменение ее колебательного состояния. [c.176]

    Имеются такж1 указания, что колебательно-возбужденные частицы могут возникать в результате перезарядки ионов [385], а также в результате вторичных нроцеесоп химического взаимодействия образующихся при электронной бомбардировке положительных ионов с нейтральными молекулами. К такому. заключению приводят, в частности, данные Франкевича (см. [1371), изучавшего вторичные процессы типа Н2О+ 4- Н3О = Н3О+ + + ОН. Наконец, колебательно- и вращательно-возбужденные молекулы образуются также нри рекомбинации атомов и радикалов. [c.177]

    Термодинамические функции идеального газа, построенные из квазитвердых молекул, особенно просто вычисляются при условии, если энергию внутренних движений молекул ег можно разделить на слагаемые, соответствующие электронному, колебательному и вращательному движениям. Хотя такое разделение является приближенным, часто оно хорошо оправдывается (см. 13). Такое разделение используется при вычислении термодинамических функций многоатомных газов, для которых неизвестны постоянные, характеризующие взаимодействие отдельных видов движений. В предположении разделения энергии внутренних движений молекулы е,- можно написать [c.314]


Библиография для Колебательные и вращательные: [c.265]    [c.246]   
Смотреть страницы где упоминается термин Колебательные и вращательные: [c.307]    [c.195]    [c.329]    [c.11]    [c.78]    [c.101]    [c.104]    [c.110]    [c.127]    [c.127]    [c.143]    [c.166]    [c.314]    [c.487]    [c.61]   
Химическая литература Библиографический справочник (1953) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте