Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переходы по мультиплетности

    В 1943 г. А. Н. Теренин выдвинул гипотезу о том, что фосфорес-центное состояние молекул является триплетным. Годом позже Г. Льюис и М. Каша показали, что фосфоресценция органических молекул, наблюдающаяся в твердых матрицах, обусловлена испусканием света из самого нижнего возбужденного состояния этих молекул и имеет мультиплетность, равнук> трем. Еще в 1936 г. А. Яблонский предложил диаграмму энергетических уровней молекул, введя третий метастабильный уровень. Трехуровневая система объясняла существование трех видов люминесценции флуоресценцию, замедленную флуоресценцию и фосфоресценцию. После возбуждения в нижнее возбужденное синглетное состояние молекула может или испустить нормальную флуоресенцию, или вернуться в основное состояние на высокий колебательный уровень путем внутренней конверсии, или претерпеть интеркомбинадионную конверсию, перейдя в триплетное состояние. Попав в триплетное состояние, молекула оказывается в ловушке , так как излучательный переход в основное синглетное состояние запрещен, а чтобы вернуться в возбужденное синглетное состояние, молекула должна приобрести тепловую энергию, равную АЕ (Т— 5 ). Поэтому молекула остается в триплетном состоянии, пока в ней не произойдет один из следующих процессов 1) испускание запрещенного излучения — фосфоресценции 2) тепловая активация в состояние 5 с последующей замедленной флуоресценцией 3) интеркомбинационная конверсия в основное синглетное состояние. [c.158]


    Молекула обладает набором энергетических состояний (рис. 28). Молекула, попавшая на верхние колебательные уровни любого возбужденного состояния, быстро теряет избыток колебательной энергии при столкновениях с окружающими молекулами. Это процесс колебательной релаксации. Безызлучательный переход между электронными состояниями одинаковой мультиплетности называется внутренней конверсией, аналогичный переход между состояниями разной мультиплетности — интеркомбинационной конверсией. [c.51]

    Согласно закону Стокса, длина волны флуоресценции всегда больше длины волны возбуждающего света. Однако имеются примеры антистоксовой флуоресценции, когда длина волны флуоресценции меньше длины волны возбуждающего света. Возбуждение молекулы соответствует переходу электрона с основного уровня на возбужденный. Поскольку молекулярные орбитали молекул с четным числом электронов заполнены парами электронов, имеющими противоположно направленные спины, то при переходе электрона на верхнюю орбиталь его спин может оказаться ориентированным или в том же, или в противоположном направлении, что и у оставшегося на нижней орбитали электрона. Если ориентация спина сохранится, то возбужденное состояние будет иметь тот же результирующий спиновый момент, что и основное состояние. При этом мультиплетность сохраняется. Мультиплетность состояния равна п+, где п — число неспаренных электронов. Если же ориентация спина изменится на противоположную, то изменится и мультиплетность. Мультиплетность основного состояния большинства молекул с четным числом электронов равна 1, т. е. это синглетные состояния. При сохранении мультиплетности возбужденное состояние тоже будет -синглетным. Если же возбуждаемый электрон меняет направление спина, то возбужденное состояние будет три-плетным. Таким образом, одному основному состоянию соответствует набор разных возбужденных состояний — синглетных и триплетных (рис. 28). [c.53]

    Возбуждение, или ионизация, атомов при столкновении их с электронами зависит от энергии или скорости последних. В большинстве случаев вероятность возбуждения молекулы или атома до соответствующего уровня знергии возрастает с возрастанием скорости электронов до определенного значения, а при дальнейшем увеличении скорости электронов вероятность возбуждения падает. Вероятностью возбуждения называется отношение числа столкновений электрона с атомом или молекулой, приводящих к возбуждению, к общему числу столкновений. Кривые, характеризующие зависимость вероятности возбуждения от скорости движения электронов, называются кривыми функции возбуждения. Положение максимума на кривой функции возбуждения зависит от мультиплетности исходного и возбужденного уровней (терм). При возбуждении термов той же мультиплетности, что и исходный терм атома, функция возбуждения нарастает довольно медленно, достигая максимального значения при очень больших скоростях электронов. Скорость электронов в этих случаях обычно в несколько раз превышает минимальное значение скорости электрона, при которой возможно возбуждение атома. Если же в результате соударения с электроном возбуждается терм иной мультиплетности, чем исходный, то функция возбуждения быстро достигает максимума и затем так же быстро спадает (рис. И, 8). Функция возбуждения для двух близких линий ртути показана на рис. И, 8. При возбуждении одной линии 2655 к, атом ртути переходит из нормального состояния в состояние При [c.75]


    Первый член описывает расщепление в нулевом поле, следующие два члена—влияние магнитного поля на спиновую мультиплетность, остающуюся после расщепления в нулевом поле члены с Ац и являются мерой сверхтонкого расщепления параллельно и перпендикулярно главной оси, а Q —мерой небольших изменений в спектре, вызванных ядерным квадрупольным взаимодействием. Все эти эффекты обсуждались в гл. 9. Последний член учитывает тот факт, что ядерный магнитный момент может непосредственно взаимодействовать с внешним полем Яд = Нц /, где у — гиромагнитное отношение ядра, а Р — ядерный магнетон Бора. Он описывает ядерный эффект Зеемана, который вызывает переходы в ЯМР. Зеемановское ядерное взаимодействие может влиять на спектр парамагнитного резонанса только в том случае, когда неспаренные электроны взаимодействуют с ядром в ядерном сверхтонком или квадрупольном взаимодействиях. Если даже такое взаимодействие и реализуется, то его величина пренебрежимо мала по сравнению с величинами других эффектов. [c.219]

    При образовании мультиплетного комплекса двойная связь в молекуле этилена переходит в одинарную и свободными валентностями оба атома углерода присоединяются к двум атомам дуплета на поверхности никеля  [c.439]

    Диаграммы Оргела используются для представления части той информации, которая полностью дана в диаграммах Танабе—Сугано. В диаграммы Оргела входят лишь те термы, мультиплетность которых совпадает с мультиплетностью основного состояния. С помошью диаграмм Оргела вполне можно интерпретировать электронные спектры разрешенных по мультиплетности переходов, поэтому в оставшейся части главы (например, рис. 10.9) мы часто будем прибегать к этим диаграммам. [c.83]

    Что касается трансмиссионного коэффициента (2.66), то в теории активированного комплекса его считают равным 1. Это означает, что изображающая точка, обладающая импульсом в пределах (р + Ар ) и достигшая перевала, всегда пересечет его и нормально скатится вниз . Это, однако, не всегда так. Во-первых, движение но координате реакции вблизи перевала, строго говоря, нельзя считать независимым от движения по другим степеням свободы. Во-вторых, в (2.66) никак не учтена форма самого барьера, которая может иметь самый разнообразный вид 27 (прямоугольная ступенька, углубление на вершине барьера — озеро Эйринга и т. д.). В-третьих, не учитывается поперечная кривизна самой координаты реакции. В-четвертых, форма потенциальной поверхности может быть такова, что эквипотенциальные кривые лежат достаточно близко друг от друга (малость I в (2.52)), что приводит к неадиабатическим переходам (см. рис. 8). Такой тип нарушений характерен для реакций, идущих с изменением мультиплетности (нарушение правила Вигнера), и в этих процессах у. (10 ч-10 ). [c.79]

    При фазовых переходах второго рода нет скачкообразного изменения спектральных характеристик, но изменение симметрии кристалла может приводить к плавному изменению мультиплетности. При переходах типа порядок — беспорядок , кроме того, наблюдается резкое уширение линий ЯКР из-за неупорядоченности системы. [c.104]

    АЛ==0, 1 2) переходы разрешены между состояниями одинаковой мультиплетности А5 = 0 3) нечетные термы комбинируют с четными, и наоборот и—>- , 4) положительные [c.200]

    Структура спектра значительно усложняется, число спектральных линий увеличивается, если источник света поместить в магнит ное или электрическое поле. Так как любая линия в спектре возникает при определенных квантовых переходах, то мультиплетность и тонкая структура спектров вообще доказывают наличие сложных закономерностей, которые существуют при движении электронов в многоэлектронных атомах элементов. Теория Бора была лишь первым шагом на новом пути. Чтобы сделать следующий шаг в познании атома, требовалось в корне изменить представление [c.55]

    Было высказано предположение- [44, 45], что реакции цис-транс изомеризации могут протекать по двум различным путям. Первый из них должен включать крутильное колебание около двойной связи. Этот путь требует больших энергий активации, но должен иметь нормальный частотный фактор. Второй путь должен включать возбуждение двойной связи, соответствующее образованию бирадикала с двумя неспареиными электронами, благодаря чему возникает возможность свободного вращения вокруг результирующей одинарной связи. Если этиленовая молекула может почему-либо совершить переход из своего нормального (синглетного) состояния в бирадикальное (триплетное) состояние, то энергия активации может быть много меньшей. Было рассчитано, что в некоторых случаях она равна лишь 25 ккал моль [46]. Однако такие переходы являются запрещенными в квантовой механике, поскольку они включают изменение мультиплетности полного электронного спина молекулы. [c.229]

    На рис. 11,5/1, В и С представляют собой вибрационные уровни, соответствующие трем электронным состояниям молекулы. Квантовая механика показывает, что существует конечная вероятность перехода системы с какого-нибудь дискретного уровня системы термов В в область континуума системы термов А, или соответственно с дискретного уровня системы В в область континуума системы С, граничащую с этим уровнем. Переход с дискретного уровня одной системы уровней в сплошную область другой системы уровней возможен при выполнении правил отбора для электронных переходов (оба уровня должны обладать одинаковым значением полного квантового числа /, т. е. А/ = 0. Проекции орбитального момента количества движения электронов на линию, соединяющую ядра, должны отличаться не больше чем на единицу, т, е. ЛХ — 0 или 1, оба уровня должны принадлежать электронным состояниям одинаковой мультиплетности, т. е. Д5=0, они должны обладать одинаковой симметрией для отражения в начале координат. У молекул, состоящих из двух одинаковых ядер, оба уровня также должны обладать одинаковой симметрией в отношении ядер. Кроме [c.67]


    Величина вероятности возбуждения существенно зависит от природы атомов и характера термов в них. Возбуждающее действие электронного удара более эффективно, чем действие света. Это объясняется тем, что электрическое поле электрона снимает запреты с переходов. Например, правило сохранения мультиплетности А5 = 0 при бомбардировке молекулы электронами заменяется менее жестким правилом А5 = 0, 1. [c.76]

    Тот факт, что переходы, разрешенные по мультиплетности, обычно дают широкие линии, в то время как переходы, запрещенные по мультиплетности.— узкие, может помочь отнесению полос в спектре. Разрешенные по мультиплетности переходы -> приводят к возбужденному состоянию, в котором равгювесное межъядерное расстояние между ионом металла и лигандом больше, чем в основном состоянии. При электронном переходе межъядерное расстояние меняться не должно (принцип Франка—Кондона), поэтому электронно возбужденные молекулы находятся в колебательно возбужденных состояниях, в которых длины связей соответствуют основному состоянию. Взаимодействие возбужденного состояния с молекулами растворителя, нахоляши-мися не в первой координационной сфере, меняется, так как при образовании возбужденного состояния ближайшие молекулы растворителя удалены от нона металла на различные расстояния. Поскольку растворитель не может реорганизоваться за время перехода, данное возбужденное колебательное состояние различных молекул взаимодей- [c.88]

    В некоторых переходах, запрещенных по спину, перестройка осуществляется на данном уровне. Например, в комплексах Сг переходы происходят с основного состояния, в котором на Г2д-орбитали находятся три неспаренных электрона, на возбужденное состояние, в котором на I2J-opбитaли находятся два спаренных и один неспаренный электрон. В этих переходах, запрещенных по мультиплетности, различие в равновесных межъядерных расстояниях в основном и возбужденном электронных состояниях часто невелико. Результатом этих переходов на низкоэнергетический колебательный уровень возбужденного состояния, кривая потенциальной энергии которого аналогична по форме и по равновесному. межъядерному расстоянию кривой потенциальной энергии основного состояния, являются узкие линии. [c.89]

    Р1/2 (Е = 16 972 см 1). Переход электрона из состояния 5 в состояния Рз/2 и Р1/2 дает поэтому две линии, лежащие в спектре на очень близком расстоянии— 26 см 1. Это знаменитая двойная желтая линия натрия. Она и указывает на дублетность терма Изучение спектра позволяет таким образом определять мультиплетность термов. Еще более полные сведения об электронных конфигурациях дает изучение расщепления спектральных линий в магнитном и электрическом полях (эффекты Зеемана и Штарка). [c.42]

    Электронные спектры высокоспиновых октаэдрических и тетраэдрических комплексов железа(П1) согласуются с диаграммами Танабе — Сугано. В этих спектрах обнаружены три перехода - Т,. 4. —> и -> [если энергия E D) достаточно низка, наблюдается четыре перехода], и поскольку величина Dq для октаэдрических комплексов выше, чем для тетраэдрических, в первых переходы и Т2(С) характеризуются более высокими энергиями. Все — -переходы запрещены по мультиплетности, и интенсивность их мала. Однако исследование элек- [c.118]

    Если лге спип-орбитальное взаимодействие достаточно мало, то правило Вигнера справедливо лишь приближенно. При этих условиях спин-орби-талыюе взаимодействие часто можно рассматривать как возмущение, считая его ответственным за переходы между электронными состояниями раз-.личной мультиплетности. [c.55]

    Такое объяснение впервые было дано Маги, Шаидом и Эйрингом [3951 применительно к цис-транс-прввращекяям производных этилена. Согласно этим авторам, превращение цис-язомвра в транс-и.юмер, заключающееся в повороте одной части молекулы относительно другой на 180° вокруг углерод-углеродной связи, в этом случае возможно двумя путями без изменения мультиплетности, т. е. из одной потенциальной ямы синглетного состояния ( ыс-изомер) в другую потенциальную яму этого же состояния транс-изомер), и с изменением мультиплетности, т. е. путем перехода в промежуточное триплетное состояние, являющееся ближайшим к основному воа- [c.114]

    Первая из этих функций имеет место, когда исходное и конечное состояния возбуждаемой частицы (атома Hg) имеют одинакоаую мультиплетность (переход 4 )a), вторая, когда при возбуждении частицы изменяется [c.174]

    В элементарных актах, протекающих с изменением электронных термов системы и получивших название неадиабатических, изменения квантовых чисел и электронной плотности происходят скачкообразно, например при изменении мультиплетности или в результате поглощения квантов /гv. Особенности каждого элементарного акта определяются числом молекул, участвующих в нем, их строением и характером реакционных центров. Рассмотрим некоторые общие закономерности элементарного акта на примере адиабатической бимолекулярной реакции типа А + В О + Е, протекающей в газовой фазе. Молекулы реагентов, находясь в тепловом хаотическом движении, периодически сталкиваются между собой. При столкновении может происходить перераспределение энергии как между сталкивающимися молекулами, так и по внутримолекулярным степеням свободы движения в молекуле. Отдельные молекулы могут переходить в энергетически возбужденное состояние. Тепловое движение столь интенсивно, так велика частота столкновений, что в системе практически мгновенно устанавливается равновесное распределение молекул по энергиям и можно пользоваться уравнением Больцмана (см. 96) [c.558]

    Наряду с Pt-Sn- комплексами на поверхности катализатора олово содержится в двух- и четырехвалентном состоянии. Имеются также большие кристаллы платины. Из рис. 6.14 и 6.15 видно, что активность Pt-Sn-катализаторапри низких температурах (315 С) мала даже в реакции дегидрирования циклогексана, что свидетельствует о слабой способности образования мультиплетного комплекса. С повышением температуры ускоряется образование мультиплетного комплекса с последующим его распадом и десорбцией продуктов реакции за счет увеличения спилловера водорода. При этом основная часть продуктор переходит в газовую фазу, а часть тяжелых непредельных соединений мигрирует на носитель, где инициирует топографическую цепнун реакцию деструктивной поликонденсации до кокса. Об этом свиде- [c.155]

    Согласно правилу Гунда, трнплетные уровни лежат ниже, чем соответствующие им синглетные уровни. Излучательный переход из нижнего триплетного состояния в основное называется фосфоресценцией. Излучательные переходы между состояниями разной мультиплетности, например между синглетами и триплетами, теоретически запрещены. В действительности, вследствие спин-орби-тального взаимодействия такие переходы наблюдаются, хотя они и менее вероятны, чем синглет — синглетные или триплет — три-плетные переходы. Триплетные молекулы легко теряют свою энергию в различных безызлучательных процессах. Они могут дезактивироваться молекулами с неспаренными электронами, например [c.53]

    Фазовые переходы первого рода (скачкообразное изменение первых производных изобарно-изотермических потенциалов в точке перехода) обнаруживают по скачкообразному изменению частот ЯКР, сопровождаемому иногда и изменением мультиплетности. На рис. 1У.б показана, например, температурная зависимость частот ЯКР для Оа+ОаСЦ , у которого [c.103]


Смотреть страницы где упоминается термин Переходы по мультиплетности: [c.235]    [c.9]    [c.75]    [c.297]    [c.73]    [c.88]    [c.91]    [c.91]    [c.128]    [c.431]    [c.67]    [c.61]    [c.62]    [c.166]    [c.630]    [c.9]    [c.103]    [c.144]    [c.42]    [c.630]    [c.261]    [c.9]    [c.255]    [c.278]    [c.296]   
Физические методы в неорганической химии (1967) -- [ c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Мультиплетность



© 2025 chem21.info Реклама на сайте