Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Возбуждение электронами

    Возбуждение электрона с в -состояние требует погло- [c.517]

    Фактор 27 может быть увеличен до 81, если допустить, что N0 также имеет статистически в 3 раза большую вероятность потерять по крайней мере один из квантов при столкновении и таким образом стабилизоваться. Это еш е.не объясняет точное значение 480, и существует возмо/кность, что возбужденные электронные состояния О еще больше уменьшают его стабильность.  [c.276]


    Спиновые ограничения иа систему триплет О + триплет О3 делают возможной только одну из четырех ориентаций, в то время как для дублет N0 + триплет О допустима одна ориентация из двух. Заметим, что для любого из образующихся возбужденных электронных состояний время жизни будет меньше, чем для основного состояния, так как их энергия Е должна быть меньше. [c.276]

    Для большинства молекул, включая углеводороды, возбужденные электронные состояния имеют настолько большие энергии возбуждения, что их вклад в сумму по состояниям может не приниматься во внимание при обычных температурах. Поэтому [c.309]

    Коэффициент 2 справедлив только для ионов, массы которых примерно одинаковы. Опытным путем найдено, что ионы аргона Аг+ начинают ионизировать атомы Аг по достижении скорости, соответствующей энергии 330 эв. Ионизация атомов Не и Ые становится заметной лишь при скорости ударяющих ионов Не+ и Ые- , отвечающей энергии, большей 500 эв. Прн ударном возбуждении атомов и молекул потенциал возбуждения ионами много выше, чем потенциал возбуждения электронами. [c.79]

    Опытное значенне предэкспоненты (см. табл. VI,3) равно 1,9- 10 сек-. Поскольку активация в мономолекулярных реакциях является процессом накопления колебательной энергии на внутренних степенях свободы молекулы и не сопровождается переходом на возбужденный электронный уровень, т. е. является процессом существенно адиабатным, трансмиссионный коэффициент близок к единице, и полученные расчетные и опытные значения предэкспоненты сопоставимы. Как видно, совпадение в данном случае получено вполне удовлетворительное. [c.173]

    Вычислить энергию возбуждения электрона (в эВ) в атоме водорода при переходе с орбитали 15 на орбиталь 2р, если 1,дина излучаемого кванта света при обратном переходе составляет 1216 10 м. [c.39]

    Энергия электронного возбуждения значительно больше энергии колебательного и вращательного движения, поэтому прн электронном возбуждении происходит возбуждение и колебательного, и вращательного движения. В спектре наблюдается сложная полоса, которую можно объяснить переходами между колебательно-вращательными уровнями нормального и возбужденного электронного состояний (рис. 8). [c.13]

    На примере ионов ванадия можно познакомиться с окраской, типичной для соединений переходных металлов. Ванадий в составе оксианиона, УО , бесцветен. В водном растворе ванадил-ион, УО" , имеет ярко-синюю окраску, ион У зеленую, а ион У" -фиолетовую. Такая окраска объясняется поглощением перечисленными растворами соответственно оранжевого света (с длиной волны около 610 нм), красного света (около 680 нм) и желтого света (около 560 нм). Окраска предметов определяется дополнительной частью видимого спектра по отношению к поглощаемому им свету (см. табл. 0-2). Большинство атомных энергетических уровней расположены настолько далеко друг от друга, что излучение, поглощаемое при возбуждении электронов, приходится на ультрафиолетовую часть спектра. Но в комплексных ионах и соединениях переходных металлов раз- [c.441]


    Чтобы диэлектрик (изолятор) стал проводить электрический ток, необходима энергия, достаточная для возбуждения электронов из заполненной зоны через межзонную щель в свободную зону молекулярных орбиталей. Эта энергия является энергией активации процесса проводимости. Лишь высокие температуры или чрезвычайно сильные электрические поля могут обеспечить энергию, необходимую для возбуждения значительного числа электронов, которые придают кристаллу проводимость. В алмазе межзонная щель (интервал между потолком заполненной, или валентной, зоны и низом свободной зоны, называемой зоной проводимости) составляет 5,2 эВ, т.е. 502 кДж моль . [c.631]

    Полупроводники обладают свойством пропускать электрический ток при условии, что они получают извне сравнительно небольшую энергию, необходимую для возбуждения электронов из нижней заполненной валентной зоны в верхнюю пустую зону проводимости. Поскольку при повышении температуры число возбуждаемых электронов возрастает, проводимость полупроводника увеличивается с температурой. Это свойство полупроводников совершенно противоположно поведению металлов при повышении температуры. [c.631]

    Для возбуждения электронов в кристалле алмаза из валентной зоны в зону проводимости требуется энергия 5,2 эВ, или 502 к Дж моль . Свет какой частоты необходим для этого возбуждения Какими должны быть его длина волны и волновое число Какой части электромагнитного спектра соответствует такой свет  [c.643]

    В тех случаях, когда определенная энергия, Е, электромагнитного излучения в видимой части спектра поглощается соединением в процессе возбуждения электрона на более высокий квантовый уровень, длина волны, X, поглощаемого света может быть вычислена при помощи соотнощения [c.206]

    Эти два соединения, хлорофилл и гем, играют важнейшую роль в сложном механизме поглощения солнечной энергии и ее превращении для использования живыми организмами. Мы уже знаем, что характерным свойством комплексов переходных металлов является наличие нескольких близко расположенных -уровней, что позволяет им поглощать свет в видимой области спектра и придает окраску. Порфириновый цикл вокруг иона Mg в молекуле хлорофилла выполняет такую же роль. Хлорофилл в растениях поглощает фотоны видимого света и переходит в возбужденное электронное состояние (рис. 20-22). Эта энергия возбуждения может инициировать цепь химических реакций, приводящих в конце концов к образованию сахаров из диоксида углерода и воды  [c.255]

    В кислой форме и-нитрофенола на атоме кислорода уже нет отрицательного заряда. Неподеленные электронные пары кислорода гораздо труднее вовлекаются в делокализацию поэтому энергетический уровень первого возбужденного электронного состояния оказывается выше, чем у основной формы. Поглощение света имеет максимум при 320 нм, который приходится на начало ультрафиолетовой области, и вследствие этого соединение имеет бледную желто-зеленую окраску. Фенолфталеин, бесцветный в кислой среде и розовый в основной среде, имеет более сложную молекулу, которая в зависимости от кислотности среды изменяется подобным же образом. [c.307]

    В случае УФС, как мы увидим, разрешение таково, что можно легко регистрировать колебательную структуру, связанную с электронным состоянием ионизуемой молекулы. Аналогия с электронной абсорбционной спектроскопией очевидна. В эксперименте УФС фотоионизации с испусканием электрона сопутствует электронный переход из основного состояния исходной молекулы в основное электронное состояние (иногда в возбужденное состояние, см. ниже) ионизованной молекулы. В электронной абсорбционной спектроскопии колебательная структура наблюдается для возбужденного электронного состояния, а в УФС — для электронного состояния ионизованной молекулы. Тогда явная форма уравнения (16.23) для энергии, необходимой для освобождения электрона из молекулы, выглядит как [c.332]

    С точки зрения теории МО, основной причиной, определяющей низкую стабильность нестабилизированных а-комплексов переходных металлов, является малая разница в энергиях высшей занятой -орбитали металла и разрыхляющей а -молекулярной орбитали, связывающей металл с углеродом. Поэтому при незначительном возбуждении электронов металла они переходят на а -разрыхляю-щую орбиталь и деформируют комплекс. При координации металла и электронодонорного органического лиганда возникают дативные связи, благодаря которым разность энергий d- и а -орбиталей увеличивается, а, следовательно, возрастает прочность комплекса. Такая координация снижает влияние и второй причины дестабилизации — перехода электронов с а-связывающей на вакантную -орбиталь, которая при взаимодействии с электронодонорным лигандом оказывается заполненной. [c.103]


    Одна из характерных особенностей высоких температур состоит в том, что энергия теплового движения частиц становится в этих условиях соизмеримой с энергией химических связей в молекулах, с более высокой энергией возбуждения электронов и даже с энергией связи электронов в атомах и молекулах. В результате этого происходят процессы диссоциации, в которых многие радикалы и [c.170]

    Часто наблюдающуюся при электронном ударе диссоциацию молекулы можно рассматривать как частный случай возбуждения электронных уровней, поскольку здесь мы также имеем дело с квантовым пеу ходом молекулы в иное электронное состояние. В качестве примера рассмотрим возбуждение [c.174]

    Шульц [505] измерил сечеиие возбуждения электронным ударом первого колебательного уровня молекулы водорода, оказавшееся равным (при энергии электрона, на 0,1 эв превышающей энергию возбуждения 0,53 se) величине порядка 10 см . Сечение близкого порядка величины было получено также для молекулы кислорода [138]. [c.176]

    Так же как и атом, молекулу можно перевести в возбужденные электронные состояния (энергия возбуждения Tg), каждому из которых отвечает своя потенциальная поверхность или кривая (кривая б на рис. 14). В дальнейшем, где особо не оговаривается, речь будет идти о молекулах в основном электронном состоянии. [c.46]

Рис. 79. Возбуждение электронного перехода у молекул галогенов Рис. 79. <a href="/info/1381970">Возбуждение электронного перехода</a> у молекул галогенов
    Так как для возбуждения электронов в молекуле требуется значительная энергия, то даже при относительно высоких температурах лишь у ничтожной доли молекул электроны находятся в возбужденном состоянии. Отсюда последним слагаемым в уравнении (61.1), если температура газа не очень высокая, можно пренебречь. Согласно статистической термодинамике энергия поступательного движения молекул [c.204]

    Если можно не учитывать возбужденные электронные состояния. [c.317]

    Атомарный водород не совершает колебательного я вращательного движений. Если не принимать в расчет возбужденные электронные состояния, то для атомарного водорода [c.275]

    Если анализируемой системе сообщать достаточную энергию, то электроны атомов переходят в возбужденное состояние и примерно через 10 с спонтанно возвращаются на нижележащие энергетические орбитали с эмиссией избыточной энергии в виде дискретных и характеристических для каждого вида атомов электромагнитных колебаний в видимой, ультрафиолетовой или рентгеновской областях спектра. При этом спектры носят линейчатый характер. При возбуждении валентных (оптических) электронов свободных атомов излучаемые линии расположены в видимой и ультрафиолетовой областях спектра. При возбуждении электронов внутренних орбиталей атома излучаются кванты с более жесткой энергией (рентгеновское излучение). Линейчатые рентгеновские спектры могут быть получены при облучении анализируемого вещества электронами (рентгеноспектральный метод анализа или более жесткими, чем излучаемые, рентгеновскими квантами (рентгенофлуоресцентный метод анализа). [c.8]

    Квантовое состояние атома с наименьшей энергией 1 называется нормальным или основным. Остальные квантовые состояния с более высокими уровнями энергии Е2, з. 4. называются возбужденными. Электрон в основном состоянии связан с ядром наиболее прочно. Когда же атом находится в возбужденном состоянии, связь электрона с ядро.м ослабевает вплВть до отрыва электрона от атома при оо. [c.15]

    В реакциях распада, приводящих к образованию свободных радикалов, могут принимать участие возбужденные электронные состояния и таким образом вносить вклад в энтропию возбужденного состояния, переходного состояния или в то и другое вместе. Кроме этого, разрыв связи между двумя первоначально связанными радикалами может привести к тому, что затрудненные вращения станут свободными вращениями в переходном состоянии. Это, возможно, является объяснением высокого частотного фактора при диссоциации С2Н0 и N204, а также в случае N20 . Как будет показано дальше, реакции, в которых образуются большие радикалы, как правило, имеют высокие частотные факторы. [c.234]

    Для молекулы, находящейся на высоком колебательном уровне в возбужденном электронном состоянии, есть две возможности или вернуться на более низкий энергетический уровень за счет излучения света, или же перейти в состояние, где уровни ее энергии окажутся в континууме н вследствие этого избыток энергии пойдет на разрыв химической связи, т. е. произойдет диссоциация. Таким образом, если переход от дискретной системы уровней к сплошной разрешен соответствующими правилами отбора, то наступление предиссоциации должно выразиться не только в том, что исчезнет вращательная структура полос, но и в том, что произойдет уменьшение интенсивности флюоресценции. Последнее можно использовать для фиксирования предиссоциации. Во многих случаях этот метод установления предиссоциа-дии оказывается более удобным, чем обнаружение расширения вращательных линий в полосе. Например, при облучении NHa светом, длина волны которого соответствует области предиссоциации, полностью исчезает флюоресценция аммиака и распад аммиака уже не зависит от давления. Эти факты совершенно однозначно указывают на то, что диссоциация аммиака происходит непосредственно после поглощения света, а не -в результате дополнительного влияния столкновения молекул друг с другом. [c.68]

    Как И В случае лантаноидов, у элементов семейства актиноидов происходит заполнение третьего снаружи электронного слоя (подуровня 5/) строение же наружного и, как правило, предшествующего электронных слоев остается неизменным. Это служит причиной близости химических свойств актиноидов. Однако различие в энергетическом состоянии электронов, занимающих 5/- и 6 /-под-.уровни в атомах актиноидов, еще меньше, чем соответствующая разность энергий в атомах лантаноидов. Поэтому у первых членов семейства актиноидов 5/-электроны легко переходят на подуровень и могут принимать участие в образовании химических связей. В результате от тория до урана наиболее характерная степень окисленности элементов возрастает от - -А до +6. При дальнейшем продвижении по ряду актиноидов происходит энергетическая стабилизация 5/-С0СТ0ЯНИЯ, а возбуждение электронов на 6 -подуро-вень требует большей затраты энергии. Вследствие этого от урана до кюрия наиболее характерная степень окисленности элементов понижается от +6 до (хотя для нептуния и плутония получены соединения со степенью окисленности этих элементов и 4-7). Берклий и следующие за ним элементы во всех своих соединениях находятся в степени окисленности +3. [c.644]

    Пример 2. Вычислить н электронвольтах энергию возбуждения электрона в атоме кальция, если пары его поглощают фотоны с длиной нолт>1 6573 10 м. [c.39]

    Решение. Энергия возбуждения электрона равна энергии ноглон1аемого фотона, которая вычисляется по уравнениям (1) и (2)  [c.39]

    Возбуждение электрона со связывающей я-орбитали на разрыхляющую я -орбиталь молекулы С2Н4 обусловливает полосу поглощения с максимумом при 171 нм (58 500 см ). Этот л -> п -переход разрешен, потому что значение приблизительно равно Ненасыщенные углеводороды типа этилена поглощают свет при больших длинах волн (меньших энергиях), чем насыщенные углеводороды. Например, насыщенный углеводород этан не обнаруживает сильного поглощения до 160 нм. Это означает, что в углеводородах разность энергий у а-связывающих и а -разрых-ляющих орбиталей больше, чем разность энергий между я-связывающей и я -разрыхляющей орбиталями. По данной причине принято не обращать внимание на ст -уровни ненасыщенных углеводородов, рассматривая только их я- и я -уровни. На рис. 13-39 показаны пространственное расположение и относительные энергии я- и я -орбиталей молекулы С2Н4. [c.593]

    Этен-номенклатурное название С2Н4 его тривиальное название-этилен.) Соединения с циклическим расположением атомов, имеющие делокализованные, бензолоподобные кратные связи, называют ароматическими. Дакрон, нафталин, ДДТ, аденин и рибофлавин (см. рис. 21-1 и 21-3) содержат ароматические группы. На примере аденина и рибофлавина видно также, что углерод способен образовывать двойные связи с азотом и что азот может принимать участие в образовании ароматических циклов с делокализованными кратными связями. Многие разделы органической химии связаны с особыми свойствами систем, включающих ароматические циклы. Ароматические молекулы и комплексные соединения переходных металлов являются двумя важнейшими классами соединений, в которых энергия, необходимая для возбуждения электрона, приходится на видимую часть спектра. Поэтому практически все красители представляют собой такие соединения и принимают участие в механизмах захвата и переноса энергии фотонов. [c.270]

    В некоторых переходах, запрещенных по спину, перестройка осуществляется на данном уровне. Например, в комплексах Сг переходы происходят с основного состояния, в котором на Г2д-орбитали находятся три неспаренных электрона, на возбужденное состояние, в котором на I2J-opбитaли находятся два спаренных и один неспаренный электрон. В этих переходах, запрещенных по мультиплетности, различие в равновесных межъядерных расстояниях в основном и возбужденном электронных состояниях часто невелико. Результатом этих переходов на низкоэнергетический колебательный уровень возбужденного состояния, кривая потенциальной энергии которого аналогична по форме и по равновесному. межъядерному расстоянию кривой потенциальной энергии основного состояния, являются узкие линии. [c.89]

    Одноэлектронные и коллективные свойства. Локазизованные МО удобны. Однако от применения ЛМО физическая сущность связи в молекуле не изменяется, электроны по-прежнему делокализованы и принадлежат всем ядрам молекулы. Делокализованные орбитали отражают эту реальность. Они описывают так называемые одноэлектронные свойства, т. е. свойства, зависящие от состояния электронов в молекуле, как, например, потенциал ионизации молекулы или энергию возбуждения электрона. [c.101]

    Для вычисления энтальпии и теплоемкостей Су и Ср в предположении гармонических колебаний и жесткого вращения могут быть получены и формулы, аналогичные формулам для Ф° (Т) и 5° (Г), приведенным в табл. 21 и 22. Для газа, построенного из нелинейных многоато.мных молекул, если можно не учитывать влияние возбужденных электронных уровней, получаем [c.316]

    Различают две основные группы проводников электрического тока проводники первого рода, электрическая проводимость которых обусловлена электронами, и проводники второго рода, обладающие ионной проводимостью. В особую группу входят полупроводники, прохождение тока через которые обеспечивают, с одной стороны, возбужденные электроны, а с другой — так называемые дырки — вакантные места на энергетических уровнях, которые покинуты возбужденными электронами. Главную роль в электрохимии играют ионные проводники — растворы и расплавы электролитов, некоторые вещества в твердом состоянии, ионизированные газы. При протекании постоянного электрического тока через электрохимические системы на электродах возникакуг электрохимические реакции, которые подчиняются двум законам Фарадея  [c.455]


Смотреть страницы где упоминается термин Возбуждение электронами: [c.16]    [c.183]    [c.627]    [c.628]    [c.233]    [c.338]    [c.91]    [c.182]    [c.101]    [c.167]    [c.45]    [c.197]   
Смотреть главы в:

Ионизованные газы -> Возбуждение электронами

Применение поглощения и испускания рентгеновских лучей -> Возбуждение электронами

Применение поглощения и испускания рентгеновских лучей -> Возбуждение электронами


Ионизованные газы (1959) -- [ c.51 ]




ПОИСК





Смотрите так же термины и статьи:

Электронное возбуждение



© 2025 chem21.info Реклама на сайте