Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика диффузионная электрохимическая

    КИНЕТИКА ДИФФУЗИОННЫХ ЭЛЕКТРОХИМИЧЕСКИХ ПРОЦЕССОВ [c.277]

    Глава XI. Кинетика диффузионных электрохимических про цессов. .......... [c.541]

    Уравнение (51.7) лежит в основе так называемых релаксационных методов изучения кинетики быстрых электрохимических реакций. Основная идея релаксационных методов заключается в том, что при сокращении времени t между подачей импульса, выводящего систему из равновесия, и регистрацией состояния системы уменьшается концентрационная поляризация. В пределе при i- 0, когда скорость диффузионной стадии стремится к бесконечности, концентрационная [c.260]


    Одним из основных объектов исследования в электрохимической кинетике является стадия перехода заряженных частиц через границу раздела фаз — стадия разряда-ионизации. Поскольку электрохимические реакции представляют собой гетерогенные процессы, то неотъемлемыми их стадиями служат подвод реагирующих частиц к границе раздела фаз и отвод продуктов реакции. Поэтому изучение закономерностей этих стадий также составляет предмет электрохимической кинетики. Соответствующий раздел кинетики электродных процессов называют диффузионной кинетикой или электрохимической макрокинетикой. Электродные процессы часто включают химические стадии, протекающие в объеме раствора или на поверхности электрода, стадии образования новой фазы, поверхностной диффузии и др. В общем случае закономерности электрохимической реакции [c.6]

    Метод вращающегося дискового электрода широко используют в электрохимических исследованиях в связи с тем, что он обладает единственным в своем роде сочетанием достоинств возможностью точного расчета диффузионного потока равнодоступностью поверхности диска диффузии стационарным режимом работы. Несмотря на экспериментальную простоту, эти качества еще недостаточны при исследовании кинетики сложных электрохимических процессов. [c.76]

    В области предельных диффузионных токов кинетика всех электрохимических реакций определяется диффузией, и все смещение потенциала может быть обусловлено концентрационной поляризацией. [c.311]

    При сравнительно небольшой катодной поляризации процесс подчиняется электрохимической кинетике. При очень большой поляризации господствует кинетика диффузионная. В определенных условиях совершается переход от одного типа кинетики к другому (смешанная кинетика). Представляет интерес найти такое уравнение, которое описывало бы весь ход поляризационной кривой от электрохимической до диффузионной кинетики, включая и область предельного тока. [c.449]

    Эта задача может быть решена, хотя бы приближенно, при помощи следующих рассуждений. В любых условиях поляризации фактическая скорость диффузии равна фактической скорости электродной реакции (гл. X, 1). Следовательно, концентрация, устанавливающаяся у внешней границы двойного слоя за счет диффузии, определяет вместе с тем и скорость электродной реакции. Поэтому в уравнение электрохимической кинетики и в уравнение кинетики диффузионной должна быть подставлена одна и та же величина концентрации при данной поляризации. Это та концентрация, которая поддерживается [c.449]


    Найденное выражение для концентрации можно подставить как в уравнение для электрохимической кинетики (X, 9), так и в уравнение для кинетики диффузионной (X, 10). [c.450]

    I — электрохимическая кинетика разряда N1 // — переход к диффузионной кинетике III — совместный разряд ионов водорода и никеля [c.314]

    Эти данные указывают на своеобразный характер диффузионной кинетики электрохимического процесса. Можяо утверждать, что электролитическое осаждение .х хрома протекает в растворе, который [c.528]

    Анализируя возможные сочетания режимов разряда ионов М] и УИ2, следует отметить, что наиболее выгодными для получения чистых металлов является режим I, когда ионы чистого металла восстанавливаются в режиме электрохимической кинетики, не ограничиваясь диффузионной, а разряд ионов примеси определяется предельным током. Наивыгоднейшим является случай, когда разряд ионов примеси идет в режиме предельного тока к этому обычно стремятся при тонком электролитическом рафинировании. Достаточно благоприятен третий случай, когда [c.566]

    ИОНЫ очищаемого металла и ионы металла примеси подвергаются разряду в режиме электрохимической кинетики при условии, что разряд ионов примеси совершается замедленно (III), т. е. подавляется процессом разряда ионов основного металла (гл. I, 9). Наименее благоприятными являются случаи, когда ионы очищаемого металла подвергаются разряду в режиме диффузионной кинетики. В практике стремятся создать условия, не допускающие этого. [c.567]

    Раздел электрохимической кинетики, задачей которого является изучение стадий подвода реагирующих частиц к поверхности электрода и отвода продуктов реакции, называют электрохимической макрокинетикой или диффузионной кинетикой. [c.143]

    Более простой способ состоит в одновременном использовании двух электрохимических диодов (рис. 118). Рабочий диод Л включают последовательно с нагрузкой а компенсационный Да— параллельно этой нагрузке и в противоположной Дх полярности. В начале каждого полупериода, когда наблюдаются максимальные значения токов прямого и обратного направлений через диод Дь диод Да также имеет повышенную проводимость. Он шунтирует нагрузку и уменьшает максимальные токи через нагрузку. При помощи описанных способов можно поднять частотную характеристику электрохимических диодов до нескольких сот герц. Таким образом, законы диффузионной кинетики позволяют рассчитать параметры электрохимического диода и установить пределы его оптимального использования. [c.219]

    Теория двойного слоя, диффузионная кинетика и теория стадии разряда — ионизации являются той основой, на которой базируется современная электрохимическая кинетика. Однако электродные процессы, при которых наблюдается лишь сочетание диффузионной стадии со стадией разряда — ионизации, относятся к числу наиболее простых электродных процессов. Часто электрохимические реакции осложняются рядом других стадий, например химическими реакциями, протекающими на поверхности электрода или в объеме раствора, стадиями образования новой фазы, поверхностной диффузии и др. [c.298]

    Иногда при достижении определенной скорости растворения ингибирующее действие органического вещества на анодное растворение металла исчезает. Это связано с тем, что при значительных анодных токах адсорбированные частицы удаляются с поверхности вместе с атомами растворяющегося металла настолько быстро, что адсорбция ингибитора не успевает происходить. Механизм влияния поверхностно-активных органических веществ на скорость электрохимических реакций в значительной мере зависит от природы лимитирующей стадии. В условиях диффузионной кинетики поверхностно-активные вещества не влияют на электрохимическую кинетику. Исключение составляют системы, в которых снижение предельного диффузионного тока в присутствии поверхностно-активного вещества может быть обусловлено уменьшением числа участвующих в реакции электронов. В условиях возникновения полярографических максимумов 3-го рода неравномерная адсорбция некоторых поверхностно-активных веществ на поверхности ртутного капельного электрода вызывает перемешивание раствора и, следовательно, увеличение скорости электрохимической реакции (см. 38). Снижение тока ниже вызванное добавками поверхностно-активных веществ, означает, что стадия разряда-ионизации замедляется в такой степени, что становится лимитирующей стадией всего процесса. Ингибирование стадии разряда — ионизации [c.376]

    На пути широкого использования электрохимических методов в современном производстве стоит проблема интенсификации электродных процессов. С одной стороны, этот вопрос решается на основе достижений диффузионной кинетики. Так, пористые электроды могут быть использованы не только для оптимизации процессов в химических источниках тока, но и при проведении электросинтеза в техническом масштабе. В этой связи представляют интерес так называемые суспензионные и псевдоожиженные электроды — взвеси частиц электродного материала в растворе. При контакте с токоотводящим электродом эти частицы передают ему свой заряд. Электродные процессы протекают по границе каждой из частиц с раствором, что снижает диффузионные ограничения и позволяет сосредоточить в малом объеме большую поверхность для протекания реакции. С другой стороны, интенсификация электродных процессов связана с поисками новых электродных материалов, удовлетворяющих одновременно требованиям высокой активности, селективности, химической устойчивости и экономии. [c.391]


    Для дальнейшего развития представлений о строении границы раздела электрод — ионная система и о кинетике процессов на этой границе необходимо усовершенствование существующих и разработка новых экспериментальных методов, более широкое применение современной электронно-вычислительной техники. Уже достигнут существенный прогресс в автоматизации электрохимических измерений и развитии разнообразных импульсных методов, позволяющих, в частности, изучать явления, которые протекают за времена порядка 10 с и менее (импульсные гальваностатические методы, метод высокочастотной рефлектометрии и др.). Далеко не исчерпаны возможности метода фотоэмиссии электронов из металла в раствор. Большой интерес представляют оптические методы изучения состояния поверхности электродов, а также воздействие на границу электрод — раствор лазерными импульсами различной длительности и частоты. Ценным дополнением к существующим методам электрохимической кинетики может служить метод изучения фарадеевских шумов — чрезвычайно слабых флуктуаций потенциала или тока, сопровождающих протекание всех электродных процессов и вызванных дискретным характером переноса электронов через границу фаз, дискретностью диффузионного потока и т. д. Использование электродов в виде очень тонких проволок или пленок, напыленных в вакууме на инертные подложки, позволяет делать выводы об адсорбционных явлениях по изменению сопротивления этих электродов. Для изучения состояния поверхности электродов и кинетики электродных процессов еще недостаточно используются такие мощные современные методы, как ЯМР, ЭПР, дифракция медленных электронов и т. п. Новые методы предварительно проверяются на ртутном электроде, на котором строение двойного слоя и кинетика многих электродных процессов исследованы с количественной стороны. По-прежнему актуальна проблема разработки методов очистки исследуемых растворов от посторонних примесей и приготовления чистых электродных поверхностей. [c.391]

    Вллоть до последнего времени большинство работ, касающихся электрохимического поведения индия, и, в частности, многочисленные работы в области полярографического анализа индия, были посвящены катодному процессу. В этом случае указанные химические стадии являются предшествующими по отношению к собственно электрохимической реакции, что в известной степени затрудняет выяснение ее кинетических закономерностей. Действительно, даже при обратимом протекании предшествующих химических стадий они способны влиять яа кинетику сум марного процесса если же эти стадии протекают медленно и практически определяют скорость всего процесса, тогда (как и при наличии медленной предшествующей диффузионной стадии) из электрохимических измерений не удается получить инфо рмацию о кинетике собственно электрохимической реакции [8. При протекании того же электродного процесса. в обратном, т. е. в анодном направлении, указанные химические стадии являются последующими по отношению к собственно электрохимической реакции. В этом случае, подобно медленной последующей диффузионной стадии 19], они оказывают меньшее влияние на результаты определения кинетических параметров электрохимической реакции. Следовательно, в случае индиевого электрода изучение кинетики анодного процесса может дать значительно большую информацию об электрохимических стадиях суммарного процесса, поскольку в этом случае предшествующие химические стадии играют меньшую роль, чем при катодном процессе.  [c.27]

    Судя по характеру катодных поляризационных кривых, на которых имеется четкий предельный ток диффузионной природы (рис. 6), предшествующая химическая реакция (10) протекает в щелочном растворе обратимо и практически не влияет на кинетику собственно электрохимической реакции, которая определяет скорость суммарного процесса не толь ко при анодной, но и при катодной поляризации. Нестационарные иотенциостатические катодные кривые ток — время [c.46]

    В заключение авторы хотели бы подчеркнуть, что потенцио-статические методы базируются не на какой-то узкой, самостоятельной теории (такой теории нет), а на представлениях электрохимической науки в целом. Ввиду специальной направленности книги и ее небольшого объема целый ряд важных проблем и понятий электрохимии здесь рассматривается предельно кратко, просто упоминается (строение двойного слоя, адсорбция на электродах, перенапряжение) или вообще не затрагивается (например, теория г1з1-потенциала, нестационарная диффузионная кинетика, коррозионно-электрохимическое поведение полупроводников и др.). Для систематического изучения электрохимии мы рекомендуем вначале учебники [9—11], а затем монографии К. Феттера [12], П. Делахея [13]. Учебники и общие руководства [14—16], в которых изложены вопросы электрохимической коррозии и пассивности, обычно в той или иной мере известны большинству специалистов-неэлектрохимиков, интересующихся потенциостатическими методами. В этом плане молено дополнительно рекомендовать как более специализированные руководства уже упоминавшуюся книгу Н. Д. Томашова и Г. П. Черновой [6] и монографию Б. Н. Кабанова [17]. [c.8]

    Эта задача может быть решена, хотя бы приближенно, при помощи следующих рассуждеций. В любых условиях поляризации фактическая скорость диффузии равна фактической скорости электродной реакции (гл. IX, 1). Следовательно, концентрация, устанавливающаяся у внешней границы двойного слоя за счет диффузии, определяет вместе с тем и скорость электродной реакции. Поэтому в уравнение электрохимической кинетики и в уравнение кинетики диффузионной должна быть подставлена одна и та же величина концентрации при данной поляризации. Это та концентрация, которая поддерживается диффузией и определяет скорость восстановления. При стационарном течении процесса эта концентрация должна быть величиной постоянной. [c.429]

    Значение явлений диффузионного перенапряжения для электрохимических процессов. Уравнения, описывающие диффузионное перенапряжение, основаны на предположении о сохранении термодинамического равновесия между электродом и электро-лито.м и на формуле Нернста для обратимого потенциала. Исследование диффузионного перенапряжения не может дать поэтому никаких дополнительных сведений ни с действительном шути протекания электродной реакции, ни о стадиях, составляющих эту реакцию. Вместе с тем применение экспериментальных методов, основанных иа явлениях диффузионного перенапряжения — ртутногО капельного мегода и вращающегося дискового электрода,— позволяет определить многие величины, играющие важную роль в кинетике электродных процессов и в элеюрохимии вообще, а также установить, является ли диффузия единственной лимитирующей стадией. [c.319]

    Уравнения (15.68) и (15.69) внешне не отличаются от уравнения (15.6), выведенного ранее в предположении замедленности диффузии. В обоих случаях раствор вблизи электрода может оказаться полностью освобожденным от восстанавливаемых частиц, что резко увеличивает поляризацию (т1- -с ) и устанавливает предел росту плотности тока (/->/г)- В условиях диффузионных ограничений компенсация разрядившихся частиц происходит за счет их постушления из толщи раствора под действием градиента концентрации, возникающего внутри диффузионного слоя б. Предельная диффузионная плотность тока отвечает в зтом случае максимально возможному градиенту концентрации и является функцией коэффициентов диффузии реагирующих частиц. В условиях замедленности чисто химического превращения восполнение разряжающихся частиц совершается за счет химической реакции, протекающей в непосредственной близости от электрода или на его поверхности. Предельная реакционная плотность тока /г должна быть функцией констант скорости соотнетствующих химических превращений. Определение величин /г н установление закономерностей химического перенапряжения дает основу для изучения кинетики быстрых химических )еакций электрохимическими методами. [c.324]

    Особенно сложно получать надежные кинетические данные для процессов с двухфазными (или большим количеством фаз) потоками, а также для реакций с гетерогенными катализаторами. Здесь нужно убедиться, что исследование кинетики ведется в условии отсутствия существенных диффузионных помех. Применяемые при этом приемы будут описаны ниже. Не менее существенным является также вопрос об измененпи соотношения объемов фаз в ходе реакции вследствие изменения условий фазового равновесия. Достаточно удовлетворительное решение этой задачи удается не всегда. Далее также будут изложены некоторые соображения по этому вопросу. Наконец, для гетерогенно-каталитических реакций помощь в расшифровке кинетики могут оказать специальные электрохимические измерения. Подробно они описаны в монографии [3]. Здесь будет приведено их краткое изложение. [c.65]

    Электродные процессы электрохимической коррозии металлов обязательно включают в себя, как всякий гетерогенный процесс, помимо электрохимической реакции, стадии массопереноса, осуществляемые диффузией или конвекцией отвод продукта анодного процесса (ионов металла) от места реакции — поверхности металла, перенос частиц деполяризатора катодного процесса к поверхности металла и отвод продуктов катодной деполяризацион-ной реакции от места реакции — поверхности металла в глубь раствора и т. п. Суммарная скорость гетерогенного процесса определяется торможениями его отдельных стадий. Если, однако, торможение одной из последовательных его стадий значительно больше других, то сумм.арная скорость процесса определяется в основном скоростью этой наиболее заторможенной стадии. В коррозионных процессах довольно часты случаи диффузионного или диффузионно-кинетического контроля, т. е. значительной заторможенности стадий массопереноса. В связи с этим диффузионная кинетика представляет теоретический и практический интерес. [c.204]

Рис. 8. Схематическое изображение. анодию-кагг одной поляризационной кривой. с участками электрохимической и диффузионной кинетики Рис. 8. <a href="/info/376711">Схематическое изображение</a>. анодию-кагг одной <a href="/info/10700">поляризационной кривой</a>. с участками электрохимической и диффузионной кинетики
    Для аналитических и электрохимических целей можно использовать не только дисковые электроды, а вращающиеся электроды иной формы, например электрод в виде проволочки, впаянной в стекло или впрессованной в тефлон, или Г-образный электрод (см. рис. 90, в). Поверхность таких электродов лишена свойства равнодоступности, и точное математическое соотношение для тока на таких электродах не найдено. Однако, проводя опыты на электродах разных типов, можно сравнить их по эффективности размешивания раствора. Если принять предельный диффузионный ток на вращающемся диске за единицу, то ток на электроде в виде проволочки при той же скорости вращения составит всего 0,2- 0,4, тогда как на Г-образном электроде он может превысить ток на диске в 5- 7 раз. Поэтому Г-образный электрод применяется, если на вращающемся диске не удается выйти в область смешанной кинетики и, следовательно, получить значение кинетического тока. Г-образный электрод является необтекаемым и работает в турбулентном режиме. Для такого электрода [c.173]

    Из уравнений (36.6) и (36.7) видно, что нестационарный ток к бесконечно большому плоскому электроду падает во времени и стремится к нулю при оо. Другой вывод, вытекающий из уравнений (36.6) и (36.7), состоит в том, что при О ток стремится к бесконечно большому значению. Это значит, что скорость подвода вещества при малых очень велика, поскольку мала эффективная толщина диффузионного слоя. В таких условиях может проявиться замедленность недиффузионных стадий электродного процесса, которые представляют наибольший интерес для электрохимической кинетики. Наличие этих стадий приводит к тому, что концентрация реагирующего вещества при наложении на электрод заданного значения потенциала падает до нуля не мгновенно [см. условие (I)], а спустя некоторый, хотя и небольшой, промежуток времени. Поэтому ток в момент включения потенциала оказывается не бесконечно большим, а приобретает вполне определенное конечное значение. [c.177]


Смотреть страницы где упоминается термин Кинетика диффузионная электрохимическая: [c.7]    [c.7]    [c.7]    [c.649]    [c.18]    [c.24]    [c.148]   
Растворение твёрдых веществ (1977) -- [ c.42 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика диффузионная

Кинетика электрохимическая



© 2025 chem21.info Реклама на сайте