Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород иридии

    Большое перенапряжение водорода на ртути позволяет работать в широком диапазоне потенциалов и выделять большое число металлов, образующих амальгамы. Схема ячейки для электролиза на ртутном катоде приведена на рис. 29. Без регулирования потенциала рабочего электрода в 0,1 н. серной кислоте осаждаются железо, медь, никель, кобальт, цинк, германий, серебро, кадмий, индий, олово, хром, молибден, свинец, висмут, селен, теллур, ртуть, золото, платина, иридий, родий и палладий. Плохо осаждаются марганец, рутений, мышьяк и сурьма. Полностью остаются в рас- [c.59]


    В дальнейшем изложены результаты по изучению нескольких систем металл — водород, а именно натрий — водород, церий — водород, палладий — водород, родий — водород, иридий — водород, осмий — водород. [c.57]

    В двойнослойной области основная часть подводимого электричества затрачивается на изменение заряда двойного электрического слоя. Измерения изоэлектрических сдвигов потенциала (см. 3.1) однозначно доказывают, что в сернокислых растворах в двойнослойной области потенциалов происходит постепенное уменьшение количества адсорбированного водо-лО. рода и возрастание количества адсорбированного кислорода, т. е. перекрывание областей адсорбции водорода и кислорода. Степень этого перекрывания зависит от pH раствора и концентрации ионов 50 " и уменьшается с уменьшением pH и с ростом концентрации 80 . В целом, однако, количество адсорбированных водорода и кислорода в сернокислых растворах на платине в двойнослойной области невелико. Степень перекрывания областей адсорбции водорода и кислорода зависит также от природы металла. Так, она наименьшая в сернокислых растворах на палладии и возрастает при переходе к платине, иридию, родию, рутению и осмию. [c.188]

    Азот. . , Алюминий Аргон. . Барий. Бериллий. Бор. . , Бром. . Ванадий. Висмут. . Водород. Вольфрам Галлий. , Гелий. . Железо, Золото. . Индий. . Иод. . . Иридий Кадмий. Калий. . Кальций, Кислород Кобальт Кремний Криптон. Ксенон. . Лантан. . Литий. . Магний Марганец Медь. . . Молибден Мышьяк. Натрий. . Неон. . . Никель. , Олово. Осмий. . Палладий Платина Радий. Радон. Рений. Родий. . Ртуть. . Рубидий,  [c.285]

    Платино-рениевые катализаторы характеризуются повышенной стабильностью, что способствует удлинению цикла работы реакторов, повышают степень ароматизации сырья, незначительно снижают активность при закоксовывании в процессе работы. Дальнейшее усовершенствование в области производства катализаторов идет по линии получения /полиметаллических катализаторов, в состав которых, кроме платины, входят иридий, германий, свинец и др. Циркулирующий водородсодержащий газ должен содержать не менее 80% объемн. водорода. Кратность циркуляции водородсодержащего газа к сырью [36] для катализаторов (в м м ) платинового 700—2300 оксида молибдена 350—1400 оксида хрома 1000 молибдата кобальта 640. [c.174]

    Используется в вакууме или инертной атмосфере (в водороде иридий становится хрупким) [c.102]

    Метод кривых заряжения был распространен на другие металлы платиновой группы (палладий, родий, иридий, рутений и осмий), а также на сплавы платиновых металлов между собой и с другими металлами. Ход кривых заряжения зависит от природы электрода. Так, на иридии и родии и в особенности на рутении и осмии адсорбция кислорода начинается при более низких потенциалах, чем на платине, в результате чего происходит сильное перекрывание областей адсорбции водорода и кислорода. Кривые заряжения палладиевого электрода характеризуются наличием горизонтального участка, соответствующего переходу от твердого раствора водорода в палладии с большим содержанием водорода (Р-фаза) к твердому раствору с малым содержанием водорода (а-фаза). [c.71]


    М-р Джон Ньюлендс зачитал статью, озаглавленную Закон октав и причины численных соотношений между атомными весами . Автор заявил об открытии им закона, согласно которому элементы, аналогичные по своим свойствам, связаны особыми соотношениями, подобными существующим в музыке между произвольной нотой и ее октавой. Исходя из атомных весов элементов в шкале Канниццаро, автор располагает известные элементы в определенной последовательности, начиная с элемента с минимальным атомным весом (водород) и кончая торием (атомный вес 231,5) однако он помещает никель и кобальт, платину и иридий, церий и лантан и т. д. как абсолютно сходные элементы в одной и той же строке. Расположенные таким образом пятьдесят шесть элементов охватывают восемь октав, и автор отмечает, что в результате хлор, бром, иод и фтор оказываются на одной строке, т. е. занимают аналогичные места в его таблице. Азот и фосфор, кислород и сера и т.д. также рассматриваются как элементы, образующие подлинные октавы. Предположения автора иллюстрируются таблицей, представленной на заседании общества и воспроизводимой ниже  [c.326]

    Термическая стабильность дисперсной структуры платины увеличивается не только в среде воздуха, но и водорода, при введении в алюмоплатиновый катализатор добавок рения, олова и кадмия [175]. Положительный эффект получен также и при добавлении иридия, но он имеет место только в среде водорода [185]. [c.83]

    Интересно отметить, что добавки хрома, молибдена, железа, никеля и иридия, исключая соотношение формы водорода, в общем сохраняют вид термодесорбционной кривой, характерной для [c.61]

    IV. Благородные металлы (высокой термодинамической стабильности) — золото, платина, иридий, палладий — не подвергаются коррозии во всех средах, кроме кислых, в присутствии сильных окислителей. Следует отметить, что вода, содержащая растворенный кислород, в коррозионном отношении значительно опаснее, чем вода, не содержащая его и окисляющая металлы только ионами водорода. [c.226]

    Простые вещества. В компактном состоянии рутений — серовато-белый, осмий — серебристо-белый металлы с плотнейшей гексагональной структурой, твердые, хрупкие и тугоплавкие. Химически чистый родий имеет вид светло-серого порошка. Сплавленный, он напоминает алюминий. Дисперсный порошок родия черного цвета называется родиевой чернью. При сплавлении родия с цинком и дальнейшей обработке сплава соляной кислотой получают взрывчатый родий. Причиной взрыва является каталитическое свойство родия взрывать смесь адсорбированных газов (водорода и кислорода). Коллоидальный родий, полученный диспергированием чистого металла в воде или восстановлением из растворов его солей, обладает еш,е большими каталитическими свойствами, чем родиевая чернь. Компактный иридий — серебристо-белый металл, подобно родию имеет структуру гранецентрированного куба, очс иь твердый и хрупкий. Платина и палладий — серовато-белые блестящие мягкие металлы. Платина легко прокатывается и вытягивается в проволоку, палладий поддается ковке, обладает большей вязкостью, чем платина. [c.403]

    В ранней литературе по катализу имеется много указаний на повышение активности катализаторов от различных добавок. Так, отмечено было повышение активности иридия следами осмия, повышение обесцвечивающей силы угля от добавок солей имеется также указание, что достаточно загрязнить золото одной пылинкой платины, чтобы оно раскалилось в токе водорода установлено повышение активности Си504 (при получении хлора из НС1) примесями Ма2804 или Кз504. Оказалось, что окисление нафталина концентрированной серной кислотой сильно ускоряется от прибавления Н , Зе или НзВОд. Очень изящным опытом является ускорение окисления анилина бертолетовой солью при добавлении меди. Добавление 0,5% СеОа к никелевому катализатору повышает скорость реакции в 10 раз, хотя в катализаторе на ИЗО атомов N1 приходится лишь 1 молекула СеОа. Разложение НоОз в присутствии солей закиси железа резко ускоряется от добавки 1 миллимоля медной соли на 1. ] реагента. В биохимических процессах роль активаторов играют ко-ферменты. [c.62]

    На поглощение водорода иридием указывал еще в 1823 г. До берейнер [496]. Однако данные о растворимости водорода в иридии, полученные с тех пор, немногочисленны и имеют качественный характер. [c.129]

    Оксиды Со, НЬ и 1г в высшей валентности обладают резко выраженными окислительными свойствами. Так, оксиды четырех- и трехвалентного кобальта при нагревании восстанавливаются в оксид двухвалентного кобальта, который легко восстанавливается водородом до металлического кобальта. Оксиды же родия и иридия, как было указано выше, при накаливании восстанавливаются до чистых металлов. [c.371]

    В химическом отношении платиноиды чрезвычайно устойчивы. В обычных условиях на компактные металлы не действуют даже самые активные металлоиды. При нагревании способность к взаимодействию различается. Например, по отношению к фтору устойчивее других родий, к сере — рутений. В целом наименее активна из всех платиноидов платина, за ней по активности стоит иридий. Платиноиды являются активными катализаторами. Отличительной особенностью платиноидов (особенно Рс1 и Р1) является способность поглощать большие количества водорода (1 об. Рс1 поглощает 800 об. И"). [c.547]


    При нагревании сера непосредственно соединяется с водородом, галогенами (кроме иода), фосфором, углем, а также со всеми металлами, кроме золота, платины и иридия. Например  [c.177]

    В газовых электродах первого рода потенциалопределяющий материал (водород, кислород, хлор и др.) не является электронным проводником. Поэтому электрический контакт здесь осуществляется с помощью инертного металла типа платины, иридия, золота, которые служат передатчиками электронов от газа к ионам в растворе или наоборот. [c.159]

    Подобно родию сведения относительно поглощения водорода иридием довольно малочисленны и носят более качсетвенный характер. [c.80]

    Из гексахлороиридатов (VI) в воде хорошо растворим Na2[lr le], а производные элементы подгруппы калия и NH4 растворимы плохо. Обра ювание малорастворимого (NH4)2[Ir lg] используется для отделения иридия от остальных платиновых металлов. При прокаливании (NH4)2[Ir le] (в атмосфере водорода) получается чистый иридий. [c.605]

    При термическом риформинге реакции сходны с реакциями, проходящими при крекинге газойлей размеры молекул уменьшаются, в то же время получаются олефины и некоторое количество ароматических углеводородов. Каталитический риформинг проводится в присутствии водорода над катализаторами гидрирования — дегидрирования, которые могут быть нанесены на окись алюминия или на алюмосиликат. В зависимости от типа катализатора имеет место определенный ряд реакций, вызывающих структурные изменения в сырье [132—137]. Главными реакциями над никелем и кобальтом являются реакции изомеризации и гидрокрекинга, над М0О7 СгаОз — дегидрирования и дегидроциклизации в то же время платина, палладий, иридий и родий способствуют реакциям дегидрирования, изомеризации, дегидроциклизации и гидрокрекинга. [c.344]

    Из металлов наиболее характерными каталитическими свой-стнами обладают элементы VUl группы периодической системы элементов Д. И. Менделеева. Для ряда процессов катализаторами являются железо (синтез аммиака) кобальт, никель, иридий, платина, палладий (гидрирование и для последних — окисление двуокиси серы). Кроме того, металлы VUl группы являются катализаторами и других процессов разложени.я перекиси водорода, получения гремучего газа, окислеиия аммиака, метанола, метана, окиси углерода, дегидрирования спиртов и т. д. Каталитической активностью обладают и соседние (в периодической системе) элементы медь, серебро, отчасти золото, возможно цинк и кадмий. [c.363]

    Каталитический риформинг протекает на активных центрах двоякого рода металлических и кислотных. Металлические центры (платина или ш. 1тина, промотированная добавками хЛора и металлов, например рения, иридия, олова, редкоземельных элементов), ускоря ют реакции дегидрирования парафинов в олефины, нафтенов в арома тические, диссоциацию молекулярного водорода, подаваемого извне гидрирование и содействуют дегидроциклизации и изомеризации Кислотные центры, расположенные на носителе - хлорированном оксиде алюминия, способствуют реакциям изомеризации олефинов циклизации и гидрокрекинга по карбоний-ионному механизму. [c.139]

    Таким образом, модифицирующее действие соединений рения и иридия заключается в образовании сплавов с платиной, увеличением энергии распада мультиплетного комплекса и десорбции непредельных, которые, попадая на металлические участки рения или иридия, гидрируются за счет спилловера атомного водорода до более стабильных соединений, или, попадая на участки носителя, инициируют топографическую цепную реакцию деструктивной поликонденсации с образованием кокса. Поэтому на диаграмме ДТА отсутствует экзотермический пик при 200 С, хв актерный для горения кокса на платине, наблюдается слабый пик при 380 С, обусловленный горением коксогенов на металлических центрах рения или иридия, и самый значительный пик при 500 С, характерный для горения кокса на носителе. [c.154]

    Вышли следующие тома т. 1, 1956 (общие сведения, воздух, вода, водород, дей-теряй, тритий, гелий и инертные газы, радон) т. 3, 1957 (главная подгруппа I группы, побочная подгруппа I группы) т. 4, 1958 (бериллий, магний, кальсий, стронций, барий) т. 7, 1959 (скандий — иттрий, редкие земли) т. 10. 1956 (азот, фосфор) т. И, 1958 (мышьяк, сурьма, висмут) т. 12, 1958 (ванадий, ниобий, тантал, протактиний) т. 14, 1959 (хром, молибден, вольфрам) т. 15, 1960 (уран и трансурановые элементы) т. 16. 19(Ю (фтор, хлор, бром, марганец) т. 18, 1959 (комплексные соединения железа, кобальта. никеля) т. 19, 1958 (рутений, осмнй, родий, иридий, палладий, платина). [c.127]

    Чистый палладий не выдерживает давления, он растрескивается и разрушается в среде водорода, поэтому проведено большое числл исследований [27] по подбору сплава палладия, с другими металлами. В настоящее время имеются сплавы с более высокой прочностью, стойкие в среде водорода и при наличии таких примесей как СО, СОа, Н3О и углеводороды С —Сд, причем проницаемость водорода через сплавы палладия выше, чем через чистый палладий. Однако такие сплавы неработоспособны при наличии в газе сернистых соединений. Хорошую проницаемость и высокую стойкость показали сплав палладия с серебром и никелем (85% Р<1, 10% А ,. 5% N1), сплав палладия с серебром, иридием и платиной (66% Р(1, 31% Ag, 3% 1г, 0,2% Р1). Имеется предложение [28] с целью удешевления сплава заменить серебро медью. [c.55]

    Под влиянием катализаторов (родий, рутений, иридий) муравьиная кислота уже при комна1ной температуре распадается на водород и углекислый газ  [c.248]

    Из гексахлороиридатов (VI) в воде хорошо растворим NajiIr lJ, а производные элементов подгруппы калия и NH+ растворимы плохо. Образование малорастворимого (МН4)2[1гС1б] используется для отделения иридия от остальных платиновых металлов (см. стр. 657). При прокаливании (NH4)a[Ir lel (в атмосфере водорода) получается чистый иридий. [c.643]

    Палладий растворим в конц. НМОз. Остальные платиновые металлы, за исключением рутения, родия и иридия, могут быть растворены в царской водке . Окисление Ки, КЬ и 1г удается провести при повышенных температурах, например, при их нагревании с кислородсодержащей соляной кислотой. Важное значение имеет способность некоторых платиновых металлов, (платины и, особенно, палладия, см. опыт 2) растворять зкачи.-тельные количества водорода. [c.643]

    Палладий (Palladium). Иридий (Iridium). Палладий — серебристо-белый металл, самый легкий из платиновых металлов, наиболее мягкий и ковкий. Он замечателен своей способностью поглощать огромное количество водорода (до 900 объемов на 1 объем металла). При этом палладий сохраняет металлический вид, но значительно увеличивается в объеме, становится ломким и легка образует трещины. Поглощенный палладием водород находится, по-видимому, в состоянии, приближающемся к атомарному, и поэтому очень активен. Насыщенная водородом пластинка палладия переводит хлор, бром и йод в галогеноводороды, восстанавливает соли железа (И1) в соли железа (П), соли ртути (П) в соли ртути (I), диоксид серы в сероводород. [c.532]

    Способы получения. В лабораториях Os получают нагреванием диоксида осмия в атмосфере смеси водорода с двуокисью углерода в технике его получают, извлекая из остатков платиновых руд после растворения их в царской водке. Этот остаток, содержащий осмий, рутений и иридий, сплавляют с цинком, прокаливают с пероксидом бария и экстрагируют водой избыток бариевых солей. Осадок подвергают перегонке с водяным паром. Осмий собирается в приемнике в виде осмиевой кислоты H2OSO4, из которой получают металлический осмий прокаливанием ее в графитовом тигле. [c.366]

    Комплексные соединения четырехвалентного иридия (иридаты) соответствуют типу Мез [IrHlgg], Наиболее важен гексахлоро-( У)иридат аммония (NH4)3 [Ir lg], из которого получают различные хлориды иридия и металлический иридий (последний прокаливанием в атмосфере водорода). [c.373]

    В ряду напряжений кобальт располагается выще водородной пары, а потому окисляется разбавленными кислотами (НС1, H2SO4), с выделением водорода и образованием солей Со . Напротив, родий и иридий практически не окисля/отся даже при действии сильных кислот — окислителей. [c.327]

    Большинство важнейших производных элементов подгруппы марганца растворимо в воде. Элементы подгруппы марганца не взаимодействуют с водородом. Специфическими производными элементов подгруппы марганца являются карбонилы [М(С0)5]г-Марганец является важной добавкой ко многим специальным маркам сталей и сплавов. Рений — важная добавка к иридию сплавы рення с иридием используются как заменители платины [c.539]


Смотреть страницы где упоминается термин Водород иридии: [c.35]    [c.35]    [c.182]    [c.699]    [c.432]    [c.274]    [c.628]    [c.125]    [c.628]    [c.65]    [c.65]    [c.192]    [c.131]    [c.354]    [c.65]   
Двойной слой и кинетика электродных процессов (1967) -- [ c.268 , c.270 ]




ПОИСК





Смотрите так же термины и статьи:

Иридий

Иридий-191 и иридий



© 2025 chem21.info Реклама на сайте