Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические соединения химические сдвиги

Таблица 15, Значения химических сдвигов протонов ненасыщенных и ароматических соединений Таблица 15, <a href="/info/749271">Значения химических сдвигов</a> протонов ненасыщенных и ароматических соединений

    Число сигналов в спектре ЯМР показывает, сколько типов протонов содержится в молекуле вещества, а химический сдвиг (положение сигналов) определяет сорт протонов (алифатические, ароматические и т. д.). Интегральная интенсивность сигналов (площадь резонансных линий) прямо пропорциональна числу протонов в атомной группировке, входящей в состав молекулы. Химические сдвиги протонов большинства органических соединений находятся в области 6 = 0 — 10 м. д. (см. Приложение, табл. 2). [c.147]

    Характеристики спектров ЯМР находят применение не только в структурно-аналитических, но и в других целях. Найдено много корреляционных соотношений спектральных параметров в рядах соединений с другими физико-химическими характеристиками. Как уже указывалась, например, зависимость химического сдвига от электроотрицательности заместителей в ближайшем окружении данного атома. В физической органической химии находят применение корреляции б с индексами реакционной способности, постоянными Гаммета и Тафта заместителей в ароматических соединениях и т. п. [c.38]

    Диамагнитные локальные электронные токи создают изотропное магнитное поле, величина которого не зависит от ориентации молекулы относительно приложенного магнитного поля. Поэтому если бы механизм экранирования включал в себя только действие локальных токов, то в соответствии с электроотрицательностями групп, к которым присоединены протоны, следовало бы ожидать закономерного убывания величины химического сдвига в ряду этан — этилен — ацетилен. Однако в спектрах этих соединений резонансные сигналы протонов наблюдаются в жидком состоянии соответственно при 0,96, 5,84 и 2,88 б. Следовательно, в молекулах этих соединений экранирование зависит не только от диамагнитного эффекта локальных электронных токов, но и от других причин. Аналогичные выводы следуют из спектров ЯМР многих других ненасыщенных и особенно ароматических соединений. [c.68]

    Использование спектроскопии ядерного магнитного резонанса (ЯМР) как критерия ароматичности уже обсуждалось (см. гл. 2.4). Относительно большие времена релаксации ароматических ядер и наличие в той же области химических сдвигов сигналов С олефинов затрудняют точные структурные отнесения для ароматических систем при использовании спектроскопии ЯМР С, если только не имеется подходящих модельных соединений [7]. Химический сдвиг ядер бензола равен 128,5 м. д. (относительно тетра-метилсилана), а для класса аренов в целом химические сдвиги лежат в области ПО—170 м. д. Теоретическая обработка химических сдвигов ароматических систем проведена достаточно полно, и имеются сводные данные 1Ю влиянию заместителей на химиче-сдвиги С в замещенных бензолах. [c.321]


    Чтобы представить величины сигналов ЯМР на ядрах Н и для разных классов соединений, на рис. 9.3-20 и 9.3-21 показаны обобщенные данные. Видно, что резонансные сигналы ядер Н и в подобных соединениях сгруппированы в характеристические области. Например, сигналы ароматических протонов находятся в области й 6,5-9,0. Протоны альдегидной группы находятся в области химических сдвигов между 9 и 11. Соответствующие резонансные сигналы ядер С аренов занимают диапазон от 100 до 150, для альдегидов — от 180 до 210. Подобные эмпирические обобщения дают возможность химикам получить информацию о структуре неизвестного соединения, оценить успешность синтеза или количественно проанализировать компоненты в смеси — и это только некоторые из возможных применений ЯМР. [c.225]

    Химические сдвиги ядер С в диамагнитных молекулах охватывают диапазон около 600 м. д., однако для подавляющего большинства органических соединений спектр ЯМР располагается в области от О м. д. до 220 м. д., который, в свою очередь, можно условно разделить на четыре участка. В сильном поле (О—50 м. д.) поглощают атомы углерода, находящиеся в состоянии хр -гибридизации. Далее располагаются сигналы 5/з-гибридизованных атомов, т. е. атомов углерода, участвующих в образовании тройной связи (65—90 м. д.). Атомы углерода в алкенах или ароматических соединениях (5/7 -гибридизованные атомы) дают резонансные сигналы в более слабом поле (80—150 м. д.). Еще в более слабом поле расположены сигналы р -гибридизованных атомов углерода, непосредственно связанных с гетероатомами О, и 5, т. е. входящие в состав разных функциональных групп (150— 220 м. д.). На рис. 60 приведена общая схема химических [c.137]

    Особенно много исследований было выполнено с гетеро-ароматическими молекулами. В табл. 22 приведены химические сдвиги ядер С для пятичленных, шестичленных и полициклических гетероароматических соединений. [c.142]

    Начинать расшифровку рекомендуется с анализа спектра, полученного с полным подавлением спин-спинового взаимодействия. При этом сначала сопоставляют число различных типов атомов углерода с ожидаемым для предположительных структур. В спектрах С относительно редко наблюдается совпадение химически неэквивалентных углеродов вследствие большого диапазона химических сдвигов углерода (см., однако, ароматические соединения ниже). Таким образом, сравнение числа линий в спектре С с числом химически неэквивалентных атомов углерода позволяет сделать предварительные выводы о структуре. [c.144]

    Еще в XIX столетии было признано, что ароматические соединения [34] сильно отличаются от ненасыщенных алифатических соединений [35], но в течение многих лет химикам не удавалось прийти к взаимно приемлемому удовлетворительному определению ароматического характера [36]. В качественном отношении серьезных разногласий никогда не существовало, и определение сводилось к следующей форме ароматические соединения характеризуются особой устойчивостью и легче вступают в реакции замещения, а не в реакции присоединения. Трудность состояла в том, что такое определение было не слишком ясным и не подходило для пограничных случаев [37]. В 1925 г. Армит и Робинсон [38] установили, что ароматические свойства бензольного ядра связаны с наличием замкнутого кольца электронов, ароматического секстета (ароматические соединения, таким образом, являются своеобразными примерами делокализованной связи), но в то время еще нельзя было определить, обладают ли другие циклы, отличные от бензола, таким электронным кольцом. С развитием магнитных методов исследования, главным образом ядерного магнитного резонанса, появилась возможность экспериментально определять наличие или отсутствие в молекуле замкнутого электронного кольца, и теперь ароматичность можно охарактеризовать как способность удерживать индуцированный кольцевой ток. Соединения, обладающие такой способностью, называют д агро/г-ными. Сегодня это определение является общепринятым, хотя оно не лишено недостатков [39]. Существует несколько методов, позволяющих установить, способно ли соединение удерживать кольцевой ток, но наиболее важный из этих методов основан на химических сдвигах в спектрах ЯМР [40]. Чтобы это понять, необходимо вспомнить следующее как правило, величина химического сдвига протона в ЯМР-спектре зависит от электронной плотности его связи, и чем выше плотность электронного облака, окружающего или частично окружающего протон, тем в более сильное поле смещается его химический сдвиг (т. е. тем меньше величина б). Однако из этого правила имеется несколько исключений, и одно из них касается протонов, расположенных вблизи ароматического цикла. При наложении внешнего магнитного поля (как в спектрометре ЯМР) в ароматических молекулах возникают кольцевые токи л-электронов, которые (при расположении плоскости ароматического [c.63]

    Из П М Р - спектра видно, что соединение имеет два сорта протонов, дающих два сигнала синглет при 2,62 м. д. и группу линий от 7,7 до 8,2 м. д., относящиеся по интенсивности как 1 1. На основании химического сдвига сильнопольный синглет может быть отнесен к сигналу СНз-группы при ароматическом кольце. Слабопольные же сигналы несомненно принадлежат ароматическим протонам (см. ПУ)..  [c.225]

    Химические сдвиги р в ароматических соединениях заслуживают особого рассмотрения. Установлено, что химические сдвиги ядра фтора можно коррелировать с о-константами Гам-мета, в особенности если их, согласно Тафту, разделить на вклады индуктивного и резонансного эффектов  [c.377]


    С эмпирической точки зрения ароматическими соединениями являются соединения, молекулярная формула которых соответствует высокой степени ненасыщенности и которые тем не менее не вступают в реакции при соединения, характерные обычно для ненасыщенных соединений. Вместо реакций присоединения эти ароматические соединения часто наподобие бензола вступают в реакции электрофильного замещения. Наряду с инертностью в реакциях присоединения проявляется также необычная стабильность этих соединений — низкие значения теплот гидрирования и сгорания. Ароматические соединения имеют циклическую структуру — обычно содер жат пяти-, шести- или семичленные циклы — и ири их изучении физическими методами обнаруживается, что их молекулы плоские (или почти плоские). Протоны в этих соединениях имеют примерно такие же величины химических сдвигов в ЯМР-спектрах (разд. 13.18), как протоны в бензоле и его производных. [c.313]

    Это наблюдение привело к открытию линейной корреляции между я-электронной плотностью и химическим сдвигом протонов в этих соединениях (рис. IV.4), которая распространяется также и на другие ароматические ионы. На основании этих данных выведено эмпирическое соотношение [c.83]

    Ароматические и гетероароматиче-ские соединения. Химические сдвиги ядер , входящих в состав ароматических и гетероароматических соединений, занимают широкий диапазон (ПО—170 м. д.), причем бензол поглощает при 128,5 м. д. В табл. 21 приложения приведены химические сдвиги С монозамещенных бензолов. [c.142]

    Оказывается, кольцевой ток такого направления и силы возникает только в молекулах ароматических соединений поэтому его наличие, на которое указывают необычные значения химических сдвигов, является самым распространенным экспериментальным критерием ароматичности. Спектры ЯМР бензола (ароматического углеводорода), фурана (ароматического гетероциклического соединения) и циклооктатетраена (неароматического анну-лена) иллюстрируют это явление (рис. 15-6). [c.583]

    В специальных учебных пособиях и руководствах приводится много примеров и упражнений по расшифровке спектров ЯМР, особенно органических соединений. Рассмотрим здесь только один из таких примеров. На рис. 11.2 представлен спектр ПМР полученного ацетилированием ароматического соединения. Брутто-формула соединения СюН1зЫ02, т. е. оно относится к производным ряда С Нгя-8 и кроме бензольного кольца содержит, очевидно, двойную связь С = 0 ацетильной группы СН3СО. В спектре ПМР видно шесть сигналов. Самый интенсивный синглетный сигнал при 2,1 м.д. относится к протонам ацетильной группы. Один из заместителей, несомненно, содержит этильную группу, дающую в спектре квартет (6 = 4 м.д.) и триплет (6=1,4 м.д.). Судя по химическому сдвигу протонов группы —СНг, она не связана непосредственно с бензольным кольцом, а связана с атомом кис- [c.34]

    В спектрах ЯМР ароматических соединений не наблюдается простой зависимости величины химических сдвигов протонов (т) от электронной плотности связанных с водородом кольцевых атомов углерода. Тем не менее в этом направлении имеется ясная тенденция, отраженная в табл. 4. Из нее явствует, что более низким электронным плотностям соответствуют и более низкие значения т. Такая закономерность наглядно проявляется на примере пиридина атом водорода, связанный с Сз-атомом, характеризуется самым высоким значением т. Кроме того, имеет значение и прямой индуктивный эффект, вызванный влиянием электроотрицательных атомов. Поэтому в пиридине в самом слабом поле наблюдается резонансное поглощение водорода, связанного с Сг-атомом, находящимся гораздо ближе к кольцевому азоту, чем Сз- и С4-атомы. То же самое относится к фурану и в меньшей степени к тиофену И пирролу. Самые низкие величины химических сдвигов оказались, как и следовало ожидать, у обладающего формальным положительным зарядом пирилий-катиона. [c.29]

    Ароматические соединения. Химические сдвиги протонов в замещенных бензолах расчитывают по уравнетию [c.166]

    Значения химических сдвигов б в помещенных ниже таблицах заимствованы из многочисленных источников, главным образом из [2, г 4]. Данные, указанные в разд. VIII.Г.4, а, часто представляют собой средние значения из нескольких наблюдений и для любого конкретного соединения могут отличаться на 3—4 единицы в последней значащей цифре (в отдельных случаях возможны еще большие отклонения). Данные, помещенные в табл. 136—148, относятся к слабо концентрированным растворам в четыреххлористом углероде или дейтерохлоро-форме и определены относительно внутреннего эталона — ТМС. Очень важно иметь в виду, что влияние растворителя, особенно в случае ароматических соединений, может приводить к значительным изменениям в наблюдаемых химических сдвигах. Отметим, что в последнее время была предложена шкала сдвигов, вызываемых растворителями, которая является независимой от эталона [13]. Как было указано выше, в литературе имеются два обзора о роли растворителей в ПМР [И, а, б]. [c.283]

    Два типа алифатических атомов углерода бисфено-ла-А легко распознаются по величине химического сдвига и относительным интенсивностям сигналов. В этом соединении имеется четыре разных типа ароматических атомов углерода. Химический сдвиг атома С-1 практически равен сдвигу соответствующего атома в феноле. Сигналы атомов С-1 и С-4 имеют меньшую интенсивность вследствие больших времен релаксации и меньших значений усиления за счет эффекта Оверхаузера. Атом С-З имеет химический сдвиг, близкий к сдвигу бензола, в то время как сигнал атома С-2 сдвинут в более сильное поле, как это и следует ожидать для атома углерода, находящегося в р-положении к оксигруппе. Химические сдвиги по-лизамещенных бензолов в большинстве случаев удовлетворительно предсказываются на основании аддитивности сдвигов соответствующих монозамещеиных соединений. Химические сдвиги, приведенные в табл. 4.1, представляют собой приближенные инкременты заместителей. [c.108]

    Тот факт, что многие 4п-электронные системы оказываются паратропными, даже если они могут быть неплоскими и иметь связи неравной длины, указывает на то, что если добиться плоского состояния молекулы, то кольцевой ток может еще усилиться. Справедливость этого утверждения прекрасно иллюстрируется ЯМР-спектром дианиона 79 и его диэтильного и дипро-пильного гомологов [207]. Напомним, что в самом соединении 79 внешние протоны дают сигнал в области от 8,14 до 8,676, а метильные протоны — при —4,256. Однако в дианионе, который вынужден принять почти такую же плоскую геометрию, но имеет уже 16 электронов, сигнал от внешних протонов смещен почти до —36, а сигнал от метильных протонов находится около 216, т. е. смещен почти на 256. Мы уже наблюдали об-)атное смещение химических сдвигов, когда антиароматические 16]аннулены превращали в ароматические 18-электронные дианионы [183]. Во всех подобных случаях изменения в спектрах [c.90]

    В спектре ЯМР С наблюдается семь линий, из которых только одна находится в области сигналов насыщенных С-атомов (бс < 50 м. д.). Учитывая, что исследуемое соединение является углеводородом, самый слабопольный малоинтенсивный сигнал (бс 206,0 м. д.) однозначно следует отнести к центральному атому С алленового фрагмента. Крайним же атомам этого фрагмента, по-видимому, отвечают сигналы при бс 92,3 и 87,5 м. д. Причем эти атомы С не могут быть безводород-ными, так как интенсивности указанных сигналов существенно превышают таковую сигнала при бс 206 м. д. Остающиеся три сигнала слабопольной области на основании их химических сдвигов (б 124,8, 126,6, 133,2 м. д.) следует приписать ароматическим атомам С. Учитывая общее число атомов углерода, надо признать, что в молекуле имеется только одно бензольное ядро. Отсюда также вытекает, что и трехуглеродный алленовый фрагмент тоже только один. Наконец, очевидно, что единственному сильнопольному сигналу (бс 12,0 м. д.) может отвечать только метильная группа (одна или [c.228]

    Спектры ЯМР С гетероциклических ароматических соединений качественно напоминают спектры замещенных алкенов, однако влияние гетероатома проявляется не так заметно, как, например, в алкенах. Для пиррола влияние атома азота проявляется в смещении резонанса сигналов 2 и 3 атомов в более сильное поле (на 10 м. д. для 2 атомов и - 20 м. д. для 3 атомов) по отнолгению к сигналу бензола [136]. Введение дополнительного атома азота в пятичленном цикле приводит к слабопольному сдвпгу для 2 атома. Смещение сигнала 3 атома фактически не наблюдается. Химические сдвиги С для некоторых азотсодержащих пятичленных гетероциклов приведены ниже [136]  [c.159]

    Величины химических сдвигов, полученные для растворов в различных растворителях, могут не совпадать и потому нуждаются в приведении к стандартным условиям путем введения поправок, особенно в случае использования ароматических растворителей (пиридин, бензол), которые вызывают сдвиги отдельных пиков в спектре. Этот факт иногда находит применение для идентификации пиков в спектрах ЯМР (метод СИАР — сдвиги, индуцированные ароматическими растворителями, см. раздел 3.3.2). Наиболее постоянны химические сдвиги протонов, связанных с атомами углерода, т. е. подавляющего большинства протонов в органических соединениях. Опыт показывает, что растворители и температура изменяют величины их химических сдвигов не более чем на 0,2—0,5 м.д. [c.67]

    Химические сдвиги протонов представлены в нескольких таблицах. В них приводятся химические сдвиги протонов метильной, метиленовой и метиновой групп, непредельных и ароматических соединений и некоторых других типов протонов. Если таблицы не содержат необходимых данных для замещенных метана, можно применить константы экранирования Шулери, приведенные в специальной таблице. [c.112]

    Несмотря на многочисленные попытки, до сих пор не удалось получить аннулен 49. Однако известны различные способы, позволяющие избежать перекрывания между двумя внутренними протонами. Наиболее успешный подход основан на построении мостика, связывающего положения 1 и 6 [155]. Были получены 1,6-метано Ю]аннулен (74) [156], а также его кислородный и азотный аналоги (75 [157] и 76 [158]) это устойчивые диатроп-ные соединения, вступающие в реакции ароматического замещения [159]. Химические сдвиги периферических протонов в 74 лежат в области от 6,9 до 7,36, а мостиковых протонов — при —0,56. Исследование кристаллической структуры 74 показало, что периметр молекулы не лежит в одной плоскости, но длины связей составляют от 1,37 до 1,42 А [160]. Построение мостика между положениями 1 и 5 также приводит к ароматической системе. Например, мостиковые протоны в соединении 77 дают сигналы при —0,34 и —0,206 161]. Таким образом, многочисленные данные показывают, что замкнутое кольцо из десяти электронов представляет ароматическую систему, однако в некоторых случаях копланарность молекулы настолько нарушена, что она не может быть ароматической. [c.85]

    В табл. 107 представлены протонные химические сдвиги, расчетные и экспериментальные [138], для ряда азотистых гетероциклов. Введение алкильных заместителей приводит к сдвигу прилежащих к заместителю протонов в сильное поле (незначительному), а введение электроотрицательных заместителей — в слабое поле (до 1 м. д. в зависимости от акцепторных свойств заместителя). Химические сдвиги для метильных заместителей лежат в интервале б = 2,2—3,07 м. д. в зависимости от места заместителя и структуры гетероциклического соединения, для метиленовых групп в а-положении к ареновому кольцу в более длинных алкильных заместителях химический сдвиг примерно на 0,3 м. д. сдвинут в слабое поле [138]. Введение азота в ароматическую структуру приводит к значительным сдвигам сигналов прилежащих атомов углерода в область слабых полей, что может быть использовано для их идентификации. Химические сдвиги С и азота для шестичлепных азотистых гетероциклов представлены ниже (м. д.)  [c.164]

    Все сказанное выше можно проиллюстрировать на примерах ЯМР-спектров (рис. 13.5) алкилбензолов толуола, п-ксилола и мезитилеиа. В каждом спектре имеется два сигнала один от протонов боковой цепи и другой от протонов кольца. (Здесь, как в некоторых ароматических соединениях, орто-, мета- и пара-протоны имеют почти одинаковые химические сдвиги и, следовательно, для целей ЯМР они почти эквивалентны.) [c.411]

    Для исследования и характеристики углеводородов с успехом применяется метод ЯМР. Сигналы протонов спектрах ЯМР насыщенных углеводородов находятся в наиболее сильном поле (химический сдвиг — й % 1 м. д.). Сигналы этиленовых протоно появляются в более слабом поле (б % 5 л д.), сигналы протонов ароматических группировок — в еще более слабом (б я 7 л. д.). Сигналы ацетрленовых протонов находятся в области б % 2,3 м д. Метод ЯМР позволяет получить сведения о геометрической конфигурации соединений. [c.215]

    По сравнению с ионными и биполярными соединениями индуцированные растворителями смещения химических сдвигов в спектрах ЯМР неполярных веществ, иапример тетраметилсилана, обычно невелики (табл. 6.6). Детальное изучение спектров ЯМР незамещенных ароматических углеводородов с чередующимися и нечередующимися двойными и одинарными связями в алифатических и ароматических растворителях-НДВС показало, что диапазон изменения химических сдвигов (относительно химического сдвига бензола) составляет всего лишь от —1,4 до +1,0 МЛН (положительные величины указывают на сдвиг в слабое поле) (405]. Оказалось, что на спектры ЯМР С этих ароматических соединений влияет полярность и поляризуемость растворителей, а для ароматических растворителей обнаружен еще и специфический эффект, называемый индуцированным ароматическим растворителем сдвигом (ИАРС см. ниже). Между индуцированными растворителями смещениями химических сдвигов и вычисленным распределением зарядов в молекуле ароматического соединения не обнаружено простой зависимости. Возможно, при взаимодействии растворителей с ароматическими веществами большую роль играют полярные эффекты высших порядков [405]. [c.471]

    Во и Фессенден [26] произвели более точный расчет, исключив точечное дипольное приближение и приняв во внимание, что я-ток не ограничивается плоскостью ароматического кольца, а имеет максимальную плотность в двух областях, расположенных по обеим сторонам плоскости. Соответствие с - химическим сдвигом, наблюдаемым при переходе от циклогексадиеновых протонов к бензольным, получается, если обе петли тока находятся на расстоянии около 0,9 А друг от друга, что примерно совпадает с вычисленным расстоянием между двумя центрами максимальной электронной плотности на 2рх-орбите углерода. Весьма существенное допущение теории Попла получило подтверждение при исследовании [26] 1,4-полиметиленбензолов (например, соединения 1). В отношении этих соединений установлено, что метиленовые группы, расположенные над центром ароматического кольца, оказались значительно сильнее экранированы, чем обычные метиленовые группы в насыщенных циклических полиметиленах. Хотя индуцированный момент усили- [c.274]

    Сравнением химических сдвигов С в спектрах указанных терпеновых кетонов (пулегона и камфоры) с еще одним стандартным соединением — грег-бутилциклогексаном — определены Дб( С-ИАРС) этих кетонов [409]. Оказалось, что правило карбонильной плоскости выполняется и в применении к индуцированным ароматическим растворителем сдвигам С карбонильных соединений [409]. Очевидно, специфическое пространственное расположение молекул ароматического растворителя вокруг биполярной карбонильной группы влияет одинаково на ядра как Н, так и С. [c.480]

    Н для с (т 2,9, б 7,1) — это ароматические протоны, следовательно, имеют дело с дизамещенным бензолом — С Н . Химический сдвиг ЗН для Ь (т 7,72, б 2,28) характерен для бензильных протонов, т. е. имеем СНд—С Н4—. Остается С4Н9, который с точки зрения 9Н для а (т 8,72, б 1,28) должен быть —С(СНа)з поскольку метильные группы отделены от кольца одним атомом углерода, то их сдвиг почти такой же, как для обычной алкильной группы. Соединение представляет собой /лрет-бутилтолуол (характер поглощения ароматических протонов свидетельствует о том, что это пара-изомер). [c.415]

    Взаимодействия между растворителем и растворенным веществом могут иметь неспецифический характер (таковы, например, дисперсионные, диполь-дипольные, индуцированный диполь-дипольные взаимодействия), а в протонных и ароматических растворителях могут быть и специфическими. Зависимость спектров ЯМР от природы растворителей впервые обнаружили Батнер-Би и Глик [226], а также независимо Ривз и Шнейдер [227] в 1957 г. С тех пор влияние растворителей на химические сдвиги (и константы спин-спинового взаимодействия) различных соединений интенсивно изучалось многими исследователями неоднократно публиковались и соответствующие обзоры [1—4, 228—237]. [c.466]

    Используя систему кодирования фирмы Varian , Сломп и Линдберг [77] составили таблицу результатов анализа различных органических азотсодержащих соединений. В ней приведены значения химических сдвигов для индолов, гидразинов, а также ароматических и ненасыщенных замещенных азотсодержащих соединений. [c.306]


Смотреть страницы где упоминается термин Ароматические соединения химические сдвиги: [c.408]    [c.168]    [c.15]    [c.73]    [c.93]    [c.450]    [c.288]    [c.294]    [c.9]    [c.273]    [c.601]    [c.470]    [c.296]   
Ядерный магнитный резонанс в органической химии (1974) -- [ c.57 ]




ПОИСК





Смотрите так же термины и статьи:

Протоны химический сдвиг ароматических соединениях

Химический сдвиг

Химическое соединение



© 2025 chem21.info Реклама на сайте