Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реактивные топлива состав

    Нефтерастворимые органические ингибиторы, описанные ранее и вводимые в нефтяную фазу. Они, как правило, весьма эффективны. Если ингибиторы предназначены для авиабензина или реактивного топлива, состав их должен строго соответствовать военным инструкциям. [c.299]

    К физико-химическим от носятся свойства, характеризующие состояние ТСМ и их состав (плотност ь, вязкость, теплоемкость, элементный, фракционный и групповой углеводородный составы и т.д.). Эти методы позволяют косвенно судить о том или ином эксплуатационном свойстве. Например, по фракционному составу судят о пусковых свойствах бензинов, по плотности реактивного топлива — о дальности полета и т.д. [c.98]


    Гетероатомные соединения — органические вещества, в состав которых входят, кроме атомов углерода и водорода, атомы серы, кислорода, азота и других элементов. Содержание гетеро-атомных соединений в реактивных топливах не превышает 1— 2% (масс.) например, в образце топлива ТС-1 из Туймазинской нефти ж 1,85% (масс.), а в гидрогенизационных топливах их меньше [7]. Влияние гетероатомных соединений на эксплуатационные свойства топлив весьма существенно. [c.13]

    Механические примеси в реактивных топливах состоят из частиц пыли, песка, продуктов износа и коррозии металлов и их сплавов, твердофазных продуктов окисления топлива и технологических примесей. Элементный состав механических приме- [c.19]

    При попадании на кожу реактивные топлива обезвоживают ее (кожа белеет), сушат и вызывают зуд, растрескивание, а также различные кожные заболевания — экземы, дерматиты. К сильным нервно-паралитическим ядам относится метанол, входяш,ий в состав жидкостей ТГФ-М, и И-М. [c.184]

    Вопрос о присутствии и концентрации свободных спиртов в сырых нефтях до сих пор остается открытым, хотя в связанной форме они, несомненно, должны входить в состав сложных эфиров. Я. Б. Чертков, А. А. Полякова и сотр. в ряде работ указывали на наличие спиртов среди кислородсодержащих компонентов нефтепродуктов (дизельных топлив [651], реактивного топлива Т-5 [606, 666]) и концентратов сернистых соединений, выделенных из нефтяных фракций [664]. Спиртам из топлив приписаны различные структуры, в том числе включающие олефиновые двойные связи установлено, что содержание их растет во времени [651]. Эти факты отчетливо свидетельствуют, что обнаруженные соединения имеют вторичную природу и образуются за счет окисления углеводородов при хранении и, видимо, при получении нефтепродукта Ч [c.112]

    Для снижения количества отложений на деталях камер сгорания двигателей, работающих на реактивных топливах РТ с добавкой противодымной присадки —циклопентадиенилтрикарбонил-марганца, предлагается вводить в состав этих топлив нафтенат, фенолят или диалкилдитиофосфат молибдена [пат. США 3718444]. [c.271]

    Техника и стоимость перевода других видов топлива в газы, взаимозаменяемые с природным газом, варьируются в очень широких пределах и зависят главным образом от свойств сырья и, следовательно, простоты его газификации. Качественный заменитель можно получать практически из любого ископаемого топлива, например из угля, сырой нефти или любой углеводородной фракции этих сырьевых материалов. В то же время сложность и стоимость процесса переработки будут значительно меньше, если относительная молекулярная масса топлива будет низкой, а химический состав его простым. Легкие углеводороды, например сжиженный нефтяной газ, лигроин, газовый конденсат или реактивное топливо, в определенных условиях можно газифицировать довольно просто с помощью пара. Более тяжелые фракции реагируют в таких условиях хуже и для инициирования процесса газификации, как правило, требуют наличия свободного водорода, получаемого во вспомогательном блоке. [c.20]


    Как видно из данных таблицы 1, окисление реактивного топлива отходящими газами в случае использования ГДА произошло значимо сильнее, чем без его использования. Состав отходящих газов (табл. 2) в обоих случаях примерно одинаков, однако в случае использования ГДА для окисления содержание 8-содержащих газов меньше в 4,4 раза, а непредельных углеводородных газов - в 2,3 раза. [c.82]

    Основные элементы, содержащиеся в нефти, — углерод и водород. Нефти содержат от И до 14% водорода. Получаемые из нефти светлые нефтепродукты (моторные топлива) имеют более высокое содержание водорода, чем исходная нефть. Авиационные бензины содержат более 15%, автомобильные бензины 14—15% и реактивные топлива 13—14,5% водорода. Котельные топлива, в состав которых входят тяжелые фракции нефти, содержат 10—11,5% водорода (меньше, чем в исходной нефти). Еще ниже содержание водорода в битумах и совсем невелико оно в нефтяном коксе. Нефтезаводские же газы по содержанию водорода (17—20%) превосходят не только нефть, но и моторные топлива. 13 процессе переработки нефти происходит, таким образом, перераспределение На- При углублении переработки нефти, когда выход светлых повышают настолько, что содержание водорода в продуктах больше, чем в исходной нефти, происходит обогащение углеводородов водородом. В работе [1] процессы переработки нефти оцениваются по эффективности использования водорода. [c.11]

    Испарение углеводородов при нерегонке нефти происходит не только при их кипении, но и при температурах, значительно более низких. Так, при телшературах выкипания бензиновых фракций вместе с углеводородами, составляющими их, перегоняются и углеводороды более тяжелые, входящие во фракции реактивного топлива и керосина. В результате мы можем получить не чистый бензин, а смесь его с более тяжелыми продуктами. Следовательно, перегонка нефти должна проводиться в условиях тщательного отделения одной фракции от другой, чтобы каждая фракция имела свой постоянный состав и отвечала предъявляемым к ней требованиям в отношении температуры выкипания, плотности, вязкости и пр. [c.84]

    В бензиновых дистиллятах определяют плотность и фракционный состав. В керосиновом дистилляте, кроме того, определяют температуру вспышки и цвет, а в дизельных и реактивных топливах также вязкость и температуру застывания. В мазуте определяют температуру вспышки и фракционный состав (начало кииения и отгон до 350°), в гудронах — температуру вспышки н застывания. Определение октановых чисел для бензиновых дистиллятов и цетанового числа для дизельных топлив обычно производят в пробах из товарных резервуаров. [c.214]

    Первый фактор определяет выбор поточной схемы завода (глубокая или неглубокая переработка). В соответствии с требуемым ассортиментом светлых нефтепродуктов выбирают процессы, их режим и мощность отдельных установок. Так, при необходимости получения дистиллята реактивного топлива мощность установок риформинга будет ограничена, так как фракционный состав этого дистиллята частично совпадает с составом сырья риформинга. [c.350]

    Одним из вариантов использования синтетических битумных нефтей может стать переработка их на специализированных предприятиях, где наряду с моторными топливами организуется производство ряда нефтехимических продуктов. В г. Эдмонтоне (Канада) в 1983 г. введено в действие первое такое предприятие мощностью 2,5 млн. т в год синтетической нефти. Помимо установки атмосферной перегонки в его состав входят процессы гидрокрекинга атмосферного газойля, гидроочистки и риформинга бензиновых фракций, экстракции и деалкилирования ароматических углеводородов, газофракционирования и производства водорода. Основная продукция, выпускаемая этим заводом,— бензин, дизельное и реактивное топлива и бензол. Капитальные затраты на его сооружение составили 820 млн, долл. (в ценах 1982 г.) [115]. [c.107]

    Важная особенность синтеза средних дистиллятов состоит в возможности изменением режима стадии каталитической гидрообработки (гидрокрекинга, гидроизомеризации) твердых парафиновых углеводородов варьировать состав получаемых продуктов, например 15% легких углеводородов, 25% реактивного топлива и 60% дизельного топлива 25% легких углеводородов, 50% реактивного топлива и 25% дизельного топлива и т. д. [c.364]

    В табл- 3 приводятся примеры производства средних дистиллятов из тяжелых газойлей и деасфальтированных нефтяных остатков. Получаемые средние дистилляты отличаются высоким качеством и почти не содержат серы, азота и алке-нов. Их состав отражает характер исходной нефти. Так, сырье с высоким содержанием алканов или цикланов дает средние дистилляты аналогичного состава. Однако имеется одно важное исключение. Средний дистиллят процесса практически не содержит н-алканов независимо от характера перерабатываемой нефти. Это дает возможность вырабатывать низко-застывающие реактивные топлива [22] и средние дистилляты из парафинистых нефтей с высокой температурой застывания. [c.61]


    Реактивные топлива по фракционному составу располагаются в следующий возрастающий ряд Т-2, ТС-1, Т-1 и РТ, Т-6. Топливо Т-2 имеет широкий фракционный состав температура начала его кипения лежит в пределах 60—80 °С, а конец кипения — выше, чем у топлива ТС-1 (реально 250—270 °С). Начало кипения дизельных топлив практически совпадаете началом кипения реактивного топлива Т-6, а конец кипения лежит значительно выше. [c.30]

    Фракционный состав и давление насыщенных паров реактивного топлива в значительной степени влияют на условия образования воздушно-топливных смесей и их сгорание. Чем выше давление паров, тем лучше испаряемость топлива. [c.109]

    При сжигании остатков атмосферной перегонки, выкипающих выше 350-360°С, в виде котельных топлив, нефть перерабатывается по неглубокому варианту. Цены на остатки первичной переработки нефти на мировом рынке значительно ниже, чем на светлые нефтепродукты (автобензины, дизельные и реактивные топлива). Неглубокая переработка нефти становится экономически невыгодной для производителя и, год от года, эта тенденция будет прогрессировать, чему есть ряд причин. Во-первых, разведка, бурение скважин и добыча нефти в труднодоступных районах связаны с постоянным возрастанием материальных и трудовых затрат, а следовательно, и цен на нефть. В связи с этим, чтобы сделать переработку выгодной, надо из каждой тонны нефти получить больше ценных качественных продуктов — моторных топлив, сырья для нефтехимического синтеза (НХС), тем самым углубить переработку нефти, свести к минимуму выпуск низкосортных малоценных продуктов, каковыми являются высокосернистые остатки первичной перегонки нефти — мазуты, входящие в состав котельных топлив. Во-вторых, важно рационально использовать имеющиеся природные ресурсы, которые являются невосполнимыми. В связи с этим при имеющихся ресурсах необ- [c.4]

    Стандартами на реактивные топлива состав регламентируется более строго — кроме норм на смолы, кислотность, общую серу, водорастворимые кислоты и щелочи включаются показатели, ограничивающие содержание непредельных и ароматических углеводородов [3, 23, 117], в том числе бициклических содержание, меркаптановой серы, даются нормы на допустимое количество загрязнений, на взаимодействие с водой (наличие поверхностно-активных веществ) и в некоторых стандартах — на содержание сероводорода, элементарной серы, а также предусматривается испытание на присутствие мыл нафтеновых кислот [117]. [c.136]

    Состав и свойства смолистых веществ, содержащвхся в реактивных топливах [c.64]

    О наличии в реактивных топливах углеводородов со слабыми С—Н-связями можно судить по результатам окисления топлив 0,1 н. раствором КМ.ПО4 в кислой среде при 25 °С в течение 30 мин [49]. Количество поглощенного кислорода (ПК), выраженное в МГ на 100 мл окисляемого продукта, определяют для исходного топлива (ПКисх) и для топлива, предварительно окисленного (оксидат) в атмосфере воздуха в течение 7 ч при 100 °С и в течение 100 мин при 150 °С — соответственно ПКюо и ПК150. Значения ПК топлив (графа 1) и входящих в их состав аромати- 32 ческих (графа 2), парафиновых и нафтеновых (графы 3) углево-дородов приведены в табл.  [c.47]

    Химический состав реактивных топлив также зависит от природы исходной нефти. Наиболее желательными компонентами реактивных топлив являются парафино-нафтеновые углеводороды. Они химически стабильны, характеризуются высокой теплотой сгорания и малым нагарообразованием. Ароматические углеводороды (особенно бициклические) менее желательны, поскольку их массовая теплота сгорания почти на 10% ниже, чем парафиновых углеводородов, они дымят и при сгорании вызывают повышенное нагарообра- ювание. Кроме того, для ароматических углеводородов характерна высокая интенсивность излучения пламени, что вредно отражается на сроке службы стенок камеры сгорания. Содержание ароматиче-С1ШХ углеводородов в реактивных топливах должно быть не более 20-22 вес. %. [c.131]

    Реактивные топлива представляют собой керосиновые фракции нефти, выкипающие в основном в пределах 140—300°С. Состав углеводородов реактивных топлив зависит от происхождения нефти и способа ее переработки. Групповой углеводородный состав некоторых образцов гидрогенизационных топлив приводится в табл. 4.1 [122]. Из данных табл. 4.1 видно, что реактивные топлива состоят из трех основных групп углеводородов алканов (парафиновых углеводородов), алициклическнх (нафтеновых) и алкилароматических. Топлива различаются по относительному содержанию каждого класса углеводородов. В топливах РТ и Т-8, как правило, преобладают алканы, в топливах Т-6 и Т-8В — алициклические. Содержание алкилароматических углеводородов в топливах Т-6 и Т-8В, ниже чем в топливах РТ и Т-8. [c.76]

    Гетероатомные соединения. В гидрогенизационных реактивных топливах гетероатомные соединения содержатся в незначительных количествах. В прямогонных керосиновых фракциях нефти содержится в среднем до Р/о гетероатомных соединений, в молекулах которых присутствуют атомы серы, кислорода и азота. Многие из этих соединений являются природными ингибиторами окисления топлив поэтому целесообразно вкратце рассмотреть состав гетероатомных соединений. Сернпстые соединения прямогонных керосиновых фракций нефти любого основания представлен.ы соединениями одних и тех же классов меркаптанами (тиолами), сульфидами, дисульфидами, тиофенами [15]. В товарных реактивных топливах обнаружены также окисленные серпистные соединения кетосульфоксиды н кетосульфоны [149—151]. [c.78]

    Адсорбционные смолы извлекаются из топлива адсорбентами и количественно наиболее полно характеризуют природные смолистые соединения, а также продукты, образующиеся при окислении топлива. Так, в свежеполученных топливах содержание адсорбционных смол в несколько раз выще содержания фактических. Свойства и состав смол, извлеченных различными адсорбентами из топлив и дистиллятов приведены в табл. 1.12. Лдсорбционные смолы подразделяют на мстаполыще и ацетатные [.5, 26]. Содержание J кaзaнныx смол в прямогонных н гидроочищенных реактивных топливах представлено в табл. 1.13, Отрицательное воздействие смол проявляется в забивке фильтров и повыщенных отложениях в элементах топливных систем, [28]. [c.19]

    Фракционный состав сырья для каталитического рифор Л1н 1" может меняться не только вследствие включения в него легкокипя-щих фракций. Так, на ряде нефтеперерабатывающих заводов бензи--новые фракции 60—105 и 105—140 °С частично используют в производстве ароматических углеводородов, а фракции 140—180 °С — в качестве комр онента реактивного топлива. В результате соотно-. шение отдельных фракций в сырье риформинга существенно отличается от их соотношения в исходном прямогонном бензине. В этой связи определенный интерес представляет возможность хотя бы приб- [c.163]

    К перспективным реактивным топливам РТ и Т-6, имеющим утяжеленный фракционный состав и плотность, предъявляются более жесткие по сравнению с юплнвом ТС-1 требования по йодному числу (0,5 вместо 2,5г йода на ЮОг топлива соответственно), содержанию общей и меркаптановой серы (0,05 и 0,001 вместо 0,2 и 0,003% масс, соответственно), содержанию нафталиновых углеводородов. [c.98]

    Реактивные топлива массовых сортов представляют собой главным образом керосиновые фракции прямой перегонки нефтей или их смеси с бензино-лигроиновыми фракциями имеются также утяжеленные сорта. Технология производства и сорта реактивных топлив непрерывно совершенствуются, поэтому меняется и их состав. Наряду с прямогонными топливами, подвергающимися только промывке щелочью, имеются массовые сорта очищенных топлив — гидроочисткой и (за рубежом) демер-каптанизацией. Кроме того, применяются и разрабатываются сорта более высококачественных топлив, предназначенных главным образом для сверхзвуковой авиации или специальных летательных аппаратов [34, 50—53]. Поэтому в настоящее время в применении имеются топлива, различающиеся главным образом содержанием неуглеводородных соединений или малостабильных углеводородов более сложного строения. [c.92]

    В качестве промышленной присадки для улучшения термической стабильности реактивного топлива по спецификации США М1Ь-Т-2554В указывается присадка 1РА-5 фирмы Ви Роп1 , которую нужно добавлять к топливу в количестве 7,5—11,5 мг/100 мл [4, 47]. В ее состав входят диспергенты, антиокислители и деактива- [c.158]

    Гидроочистка реактивного топлива. Для исходного дистиллята и соответствующей фракции гидрогенизата определяют плотность, содержание серы, фракционный состав по ГОСТ, высоту нскоптящего пламени, содернание ароматических углеводородо.ч. [c.172]

    Современные схемы неглубокой переработки нефти иногда ие включают установок ни термического, ни каталитического крекинга. Кроме установки перегонки нефти на несколько узких фракций предусмотрена гидроочистка отдельных компонентов и в некоторых случаях более широких фракций, которые затем разделяют на более узкие путем вторичной перегонки. Котельное топливо компаундируют из остатков перегонки и тяжелых дистиллятных компонентов, не подвергающихся гидроочистке. Автомобильный бензин с достаточно высоким октановым числом получают в процессе каталитического риформинга тяжелого бензина прямой перегонки. Однако заводы, сооруженные по такой схеме, как правило, нмеют чисто топливный профиль. При необходимости поставлять сырье для нефтехимического синтеза в состав завода включают крекинг-установки или направляют часть малоценных сернистых дистиллятов на установки пиролиза, принадлежащие нефтехимическим заводам. Подробное направление переработки свойственно некоторым нефтеперерабатывающим заводам Западной Европы, сооруженным в 1960 г. На рис. 116 представлена типичная схема глубокой переработки сернистой пефти. Нефть после двухступенчатой электрообессоливающей установки (на схеме не показана) поступает иа атмосферновакуумную перегонку, в результате которой получается несколько светлых дистиллятов, тяжелый газойль и гудрон. Головку бензина и фракцию реактивного топлива после очистки направляют на смесительную станцию для компаундирования. Фракцию тяжелого бензина подвергают каталитическому риформингу для получения высокооктанового компонента бензина или ароматических углеводородов. Кроме того, риформингу подвергается бензиновый дистиллят коксования. Оба компонента сырья предварительно проходят гидроочистку. Предусмотрена экстракция ароматических углеводородов из жидких продуктов риформинга, которая при получении на установке риформинга бензина служит одновременно для отделения и возврата на повторный риформинг непревращенной части сырья. Полученный экстракт путем ректификации разделяют на требуемые компоненты или углеводороды. Керосиновый дистиллят и легкий газойль проходят гидроочистку и используются после этого как компоненты дизельного топлива. Тяжелый вакуумный газойль подвергают каталитическому крекингу в смеси с газойлем коксования. Для увеличеиия выхода светлых на установке каталитического крекинга предусмотрена рециркуляния. Гудрон поступает на установку коксования жидкие продукты этого процесса являются сырьем для установок каталитического риформинга и каталитического крекинга, о чем было упомянуто выше легкий газойль коксования после гидроочистки использустся как компонент дизельного топлива. Кроме того, на установке получают кокс, который можно [c.356]

    Образование осадка в этилированных бензинах может прюисходить и за счет распада тетраэтилсвинца, входящего в состав этиловой жидкости. На образование смолистых веществ и выпадение ТЭС в осадок большое влияние оказывают вода, металлы, свет. Смолистые вещества, содержащиеся в автомобильных и авиационных бензинах, в дизельных и реактивных топливах и соответствующих маслах снижают их качество и понижают надежность рабоп двигателей [c.34]

    Обладая способностью акцептировать два протона, N2H4 дает два ряда солей типа [NaHsJ l и [NaHeJ b. Являясь восстановителем, гидразин горит на воздухе (окисляясь до N2) с выделением большого количества теплоты (600 кДж/моль).,С помощью энергичных восстановителей (например, атомарного водорода) его можно восстановить до аммиака. Гидразин и его производные ядовиты. Их применяют в органическом синтезе, в производстве инсектицидов, пластмасс, взрывчатых веществ. Они также входят в состав реактивного топлива. [c.256]

    Смесь оксидов лантаноидов в виде абразивного материала полири-та используется для полировки оптических и прожекторных стекол. Стекла, содержащие СеОа, не темнеют под действием радиации, поэтому находят применение в атомной технике. В цветных стеклах есть оксиды различных лантаноидов. PFjOs входит в состав стекла защитных очков сварщиков, неодимовые стекла предохраняют глаза от вредного действия солнечного света. Лантаноиды могут найти применение как твердое реактивное топливо (подобно литию, бору и др.) для ракет, подводных лодок. Из оксида иттрия полупроводниковой чистоты готовят иттриевые ферриты (см. 7), предназначаемые для слуховых аппаратов и ячеек памяти счетно-решающих устройств. [c.329]

    Иэ природных и синтетических нефтей производят следующие видьг топлив авиационные и автомобильные бензины, реактивное топливо, мазуты и горючие газы. Наиболее важными показателями их свойств являются фракционный состав, плотность, температура кристаллизации, давление насыщенных паров и содержание таких компонентов, как сера, смолы и др. [c.268]


Смотреть страницы где упоминается термин Реактивные топлива состав: [c.16]    [c.123]    [c.14]    [c.344]    [c.212]    [c.54]    [c.172]    [c.268]    [c.85]    [c.32]    [c.149]   
Нефтепродукты свойства, качество, применение (1966) -- [ c.96 ]




ПОИСК





Смотрите так же термины и статьи:

Топливо реактивное



© 2025 chem21.info Реклама на сайте