Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды реактивных и дизельных топливах

    Нафтеновые углеводороды являются наиболее высококачественной составной частью моторных топлив и смазочных масел. Моноциклические нафтеновые углеводороды придают автобензинам, реактивным и дизельным топливам высокие эксплуатационные свойства, являются более качественным сырьем в процессах каталитического риформинга. В составе смазочных масел нафтены обеспечивают малое изменение вязкости от температуры (т.е. высокий индекс ма — сел). При одинаковом числе углеродных атомов нафтены по сравнению с алканами характеризуются большей плотностью и, что особенно важно, меньшей температурой застывания. [c.65]


    Так, каталитическим крекингом получают дополнительные количества высокооктановых бензинов, посредством каталитического риформинга повышают октановое число бензинов и получают ароматические углеводороды (бензол, толуол, ксилолы и этилбензол). Гидроочистка позволяет производить реактивные и дизельные топлива с малым содержанием серы. Процесс пиролиза дает возможность получить из нефти важнейшее сырье для нефтехимии этилен, пропилен, бутилены и моноциклические ароматические углеводороды, а также сырье для производства высококачественных сажи и электродного кокса. [c.198]

    Из изложенного видно, что индивидуальные ароматические углеводороды — бензол, толуол, ксилолы, этил-бензол, изопропилбензол и нафталин — важные продукты, на которых базируются многие области химической промышленности. Как говорилось выше, ароматические углеводороды являются высокооктановыми компонентами бензинов. Однако присутствие ароматических углеводородов в дизельном топливе и горючем для реактивных двигателей ухудшает условия сгорания и крайне нежелательно. Полициклические ароматические углеводороды с короткими боковыми цепями вредно отражаются на эксплуатационных качествах смазочных масел. Из этих продуктов ароматические углеводороды тщательно удаляют. [c.84]

    Содержание непредельных углеводородов в дизельных топливах и их компонентах, в том числе в продуктах каталитического крекинга, составляет 3—12%. Ограничение содержания непредельных углеводородов в товарных дизельных топливах, предусмотренное в стандарте, вызвано главным образом необходимостью предотвратить вовлечение в них продуктов термического крекинга. Непредельные углеводороды керосино-газойлевых фракций охарактеризованы, выше, при рассмотрении состава реактивных топлив. Сюда относятся и ароматические углеводороды с непредельной боковой цепью, которые содержатся также во фракциях прямой перегонки. [c.25]

    Бензины и дизельные топлива в отличие от реактивных топлив могут содержать значительное количество ненасыщенных углеводородов, которые легко окисляются в жидкой фазе. При этом образуются стабильные радикалы типа  [c.53]

    Дизельные топлива представляют собой смесь различных углеводородов, в этой связи для исследования начальной стадии окисления дизельных топлив и разработки способа стабилизации использованы кинетические методы, разработанные при изучении окисления и стабилизации гидрогенизационных реактивных топлив. [c.7]


    Дизельные топлива представляют смесь различных углеводородов, в этой связи справедливо полагать, что при исследовании процессов окисления и способов их торможения можно использовать цепную теорию жидкофазного окисления индивидуальных углеводородов и методик, основанных на получении количественной информации о кинетике процесса [68-70]. Правомерность такого подхода была установлена при изучении кинетических закономерностей окисления и стабилизации реактивных топлив [66]. [c.33]

    Трудности возникают и при оптимизации качества средних дистиллятов-реактивного и дизельного топлив. Топлива для реактивных двигателей получают преимущественно из прямогонных фракций нефти. Увеличение ресурсов их производства связано с оптимизацией (расширением) фракционного состава, температуры начала кристаллизации и содержания ароматических углеводородов, вязкости и показателей качества. Установлено, что каждый процент увеличения отбора реактивного топлива сопровождается уменьшением выхода дизельного топлива на 0,9%, а суммы светлых - на 0,5%. [c.206]

    НПЗ с неглубокой переработкой нефти вырабатывает автобензины марок А-76 и АИ-93, термостабильное реактивное топливо типа РТ, малосернистые дизельные топлива зимнего и летнего сортов, битум, котельное топливо. Для использования в нефтехимических производствах на заводе получают сырье пиролиза, индивидуальные легкие углеводороды (С3, С4, иногда С5), ароматические углеводороды (бензол, толуол, ксилолы), жидкий парафин нормального строения, серу и серную кислоту. [c.54]

    Промышленный опыт показал большую гибкость процесса гидрокрекинга возможность переработки различных видов нефтяного сырья оперативного технологического регулирования свойств товарных продуктов варьирования соотношений выработки автомобильных бензинов, дизельных и реактивных топлив, что особенно важно при конъюнктурных изменениях внутри страны и за рубежом. Получаемые при гидрокрекинге основные товарные продукты отличаются высоким качеством. Это объясняется, протеканием реакций изомеризации нормальных парафиновых углеводородов, в связи с чем. понижается температура застывания топлив. В результате реакций гидрирования снижается содержание ароматических углеводородов в реактивных и специальных дизельных топливах, а также в керосинах, что не может быть достигнуто применением обычной гидроочистки. [c.341]

    Тот или иной тип сооружения для налива принимается в зависимости от количества вырабатываемых продуктов и их физикохимических свойств. Как правило, при выработке продукции, объем которой ограничен несколькими десятками тысяч тонн (сжиженные газы, ароматические углеводороды) для отгрузки используются одиночные стояки. Для отгрузки многотоннажных светлых нефтепродуктов (реактивные топлива, бензин, дизельное топливо) сооружаются двухсторонние эстакады галерейного типа с верхним или нижним расположением коллекторов. В последнее время предпринимаются попытки создания промышленных станций автоматического налива светлых нефтепродуктов. Темные нефтепродукты наливаются на эстакадах галерейного типа, двухсторонних с верхним расположением коллекторов. Аналогичную конструкцию имеют и железнодорожные эстакады, предназначенные для налива масел, -но при этом над эстакадой сооружается навес, а боковые стены на определенную высоту обшиваются шифером для предотвращения попадания атмосферных осадков в горловину цистерн. [c.16]

    В последних при хранении в умеренных условиях постепенно накапливаются растворимые продукты окисления и трансформируются в нерастворимые вещества, которые вместе с продуктами коррозии и загрязнениями могут выпадать из топлива в виде твердой фазы. Этот процесс характерен именно для среднедистиллятных топлив (реактивных, дизельных), так как в них содержатся более сложные, чем в бензинах, бициклические углеводороды, а также неуглеводородные примеси. Процессы окисления и смолообразования значительно ускоряются в среднедистиллятных топливах, содержащих непредельные углеводороды. [c.93]

    С), возможных в топливной системе теплонапряженных двигателей [6, 37, 43]. При таких температурах дизельные топлива претерпевают аналогичные окислительные превращения, как и реактивные, но еще более интенсивно вследствие большего содержания высокомолекулярных углеводородов и смолистых веществ. Диспергирующие присадки при добавлении к дизельным [c.151]

    Базируясь на коллоидно-химических представлениях, нефтя юе сырье и нефтепродукты можно рассматривать как неструктурированные (ненаполненные) и структурированные (наполненные) системы. Неструктурированные системы представляют собой смесь углеводородов, не склонных при данных условиях к межмолекулярным взаимодействиям, приводящим к образованию ассоциатов. Такие системы термодинамически стабильны, легко подвижны и не расслаиваются. Ассоциаты (дисперсная фаза) в этих системах отсутствуют. К неструктурированным нефтяным системам из товарных нефтепродуктов, не расслаивающихся в условиях изготовления и применения, относятся газы, бензины, реактивные и дизельные топлива, масла. До настоящего времени исследователи и технологи занимались получением неструктурированных систем (нефтяного сырья и нефтепродуктов), используя для этой цели процессы ректификации, экстракции, адсорбции, депарафинизации, деасфальтизации и с помощью деструктивных методов. [c.33]


    Этот процесс позволяет вырабатывать до 80% мае. реактивного или 85% мае. летнего дизельного топлива (около 70% мае. зимнего дизельного топлива) с одновременным получением 15—23% бензиновых с )ракций. Расход водорода при этом составляет 2,5-3,1 % мае. на сырье. (Соотношение выходов реактивного/дизельного топлив и бензина может изменяться в широких пределах. С увеличением жесткости процесса возрастает выход бензиновой фракции, а также газообразных углеводородов (в основном фр. С3-С4) [243, 280, 290]. [c.277]

    Жидкая фаза из сепаратора среднего давления поступает в колонну стабилизации 8, в которой освобождается от остатков легких углеводородов С3-С5. Жидкий продукт из колонны стабилизации направляется в ректификационную колонну 9, в которой разделяется на отдельные фракции легкий бензин, тяжелый бензин, реактивное топливо или дизельное топливо. Остаток дистилляционной колонны смешивается со свежим сырьем и возвращается в реактор (рециркулирует). [c.282]

    Катализаторы гидрокрекинга и гидроочистки. Процесс гидроочистки применяется для улучшения качества нефтяных дистиллятов путем их обработки водородом в присутствии катализатора. При этом они освобождаются от соединений серы, азота и кислорода, происходит гидрогенизация олефинов. диолефиновых и ароматических углеводородов. Гидроочистке подвергаются бензин, лигроин, топливо для реактивных двигателей, керосин, мазут, дизельное топливо, смазочные масла, сланцевые масла, угольные смолы, продукты, полученные из горючих сланцев и т. д. [46]. Используются алюмо-кобальт-молибденовый, алюмо-никель-молнбденовый или алюмо-никель-вольфрамовый катализаторы. Перед применением в процессе катализаторы обычно насыщают серой. Процесс гидроочистки проводят при температуре 300—400 °С, давлении 3—4 МПа, объемной скорости подачи сырья 1—5 ч"- и циркуляции водорода до 10 моль на 1 моль углеводорода. Во избежание повышенного коксоотложения на катализаторе сырье, поступающее на гидроочистку, необходимо предохранять от окисления. Катализаторы очень устойчивы к отравлению. Потерявший активность катализатор содержит сульфиды металлов и углистые отложения. Регенерацию проводят при температуре 300—400 °С паровоздушной смесью с начальной концентрацией кислорода 0,5—1% (об.). [c.405]

    Важная особенность синтеза средних дистиллятов состоит в возможности изменением режима стадии каталитической гидрообработки (гидрокрекинга, гидроизомеризации) твердых парафиновых углеводородов варьировать состав получаемых продуктов, например 15% легких углеводородов, 25% реактивного топлива и 60% дизельного топлива 25% легких углеводородов, 50% реактивного топлива и 25% дизельного топлива и т. д. [c.364]

    Реактивные и дизельные топлива являются среднедистиллятными нефтяными фракциями с частично перекрывающимися пределами выкипания (см. 1.1.). В них содержатся углеводороды различных классов, гетероатомные соединения и неорганические примеси. [c.15]

    Товарные реактивные и дизельные топлива содержат следующие основные классы углеводородов (% мае.)  [c.16]

    Нефтяные топлива (бензины, реактивные, дизельные, котельные) представляют собой смесь углеводородов различных классов и гетероатомных соединений. В топливах содержится растворенный кислород, они контактируют с различными металлами топливных систем. Топлива применяются в широком интервале температур. [c.29]

    Выходящий из реактора продукт охлаждается сначала в теплообменнике свежим сырьем, а затем в холодильнике. Жидкий продукт выделяют в сепараторе высокого давления или в многоступенчатой системе однократного испарения, что позволяет уменьшить поверхности теплообмена. Выделенный в сепараторе циркулирующий газ часто пропускают через аминовый абсорбер для очистки от сероводорода, содержащегося в добавочном водороде с установок риформинга, после чего повторно сжимают. В некоторых случаях циркулирующий газ подвергают абсорбционной очистке для извлечения низкокипящих углеводородов. Жидкий продукт из сепаратора направляют в отпарную колонну, где удаляются растворенные газы и небольшое количество низкокипящих углеводородов, образующихся при процессе после отпарки в качестве остатка получают очищенный керосин, реактивное, дизельное или печное топливо. Лишь в редких случаях возникает необходимость дополнительной щелочной или водной промывки жидкого продукта. [c.153]

    На нефтеперерабатывающих заводах в настоящее время вырабатывают широкий ассортимент топлив, масел, полупродуктов и продуктов для нефтехимии. В производстве топлив заводы ориентируются на выпуск главным образом высокооктановых бензинов АИ-93, дизельного топлива с содержанием серы не выше 0,2%, реактивного топлива с ограниченным содержанием ароматических углеводородов (не более 127о для некоторых сортов керосинов) и малосернистого котельного топлива. Масла будут выпускаться с высоким индексом вязкости, высоковязкие и маловязкие, стойкие против нагарообразования и обладающие целым рядом других ценных эксплуатационных свойств, которые им придают специальные композиции в виде различных присадок. [c.14]

    Не менее важен процесс гидроочистки, предназначенный для улучшения качества углеводородного сырья. Ей подвергают бензины, лигроины, топлива для реактивных двигателей, дизельное топливо, масла, мазуты, угольные смолы, продукты, получаемые из горючих сланцев и т. д. Обработка водородом в присутствии катализаторов освобождает сырье от связанной серы, азота и кислорода, а также ведет к гидрированию ненасыщенных углеводородов и ароматических колец. Процесс проводят при 300—400°С, 3—4 МПа и 10-кратном избытке водорода. После гидроочистки как правило изменяются запах и цвет продуктов, уменьшается количество выделяющихся смолистых веществ, улучшаются топливные характеристики, повышается стойкость при хранв НИИ. Особенно важно удалить из топлива серу, чтобы предотвратить отравление воздуха диоксидом серы, который образуется при сгорании топлива. [c.90]

    Изомеризация парафиновых углеводородов Сю-Сзо осуществляется с целью получения низкоэастывающих керосинов - топлив для реактивных двигателей, зимних сортов дизельного топлива и низкозастыва-ющих масел.  [c.3]

    Повышение конца кипения ДТ и степени отбора реактивного топлива приводит к изменению его углеводородного состава (табл. 1.1) [3]. Имеет место увеличение общего содержания ароматических углеводородов от 22.8 до 28.5% (для стандартного ДТ) и от 25.4 до 30.8% (для дизельного топлива УФС). При этом содержание бензольных колец в ароматических углеводородах снижается, а нафталиновых и фенант-реновых — увеличивается. [c.12]

    Основным назначением гидроочистки является улучшение качества нефтяных фракций в результате удаления нежелательных прнмесей (серы, азота, кислорода, смолистых веществ, непредельных углеводородов). Остаточное содержание серы в целевых продуктах невелико (%) в бензинах, направляемых после гидроочист-ки на риформирование,— 1,2-10 —2-10 в гидроочищеином реактивном топливе — 0,002—0,005 в дизельном топливе — 0,02— 0,2. При гидроочистке помимо товарного продукта получают газ, отгон (из керосиновых и более тяжелых фракций) и сероводород. Газ, содержащий водород, метан и этан, используют как топливо непосредственно на предприятиях отгон — бензиновую фракцию с [c.219]

    По методу ASTM D 3343 содержание водорода в авиационных топливах определяют расчетным путем по эмпирическим уравнениям, выведенным на основании связи физико-химических характеристик топлив с содержанием в них водорода. Эти соотношения установлены по результатам исследований 331 образца, из которых 247 образцов представляли собой топлива, а остальные 84— чистые углеводороды, промышленные образцы смесей углеводородов, а также специальные топлива HTF (разработанные для испытаний при высоких температурах). Использование метода ASTM D 3343 предусмотрено для следующих топлив авиационных бензинов по MIL-G-5572, реактивных топлив JP-4 и JP-5 по MIL-T-5624, JP-6 по MIL-T-25056, JP-7 по MIL-T-38219 и Jet А по ASTM D 1655, а также на дизельное топливо № 2, специальные топлива HTF и чистые углеводороды. [c.56]

    К гидрогеиизациоииым промышленным процессам отпосятся гидроочистка топлив и масел и гидрокрекинг. В лаяисимости от глубины назиачв1шем гидроочистки является удалепие из топлив серосодержащих соединений и непредельных углеводородов или, кроме того, гидрирование ароматических. В первом случае гидроочистка осуществляется при умеренном давлении водорода (3—5 МПа, т. е. 30—50 кгс/см - ) и температуре 360—420 °С. Такой гидроочистке подвергают бензины перед направлением на риформинг, реактивное и дизельное топлива реже — сырье каталитического крекиига (вакуумный газойль). Менее распространена вторая разновидность процесса — глубокая гидроочистка дизельных топлив под давлением 10—15 МПа (100—150 кгс/см ). Глубокую гидроочистку используют в основном для снижения содер-я ания ароматических углеводородов в дизельных дистиллятах каталитического крекинга для повышения их цетанового числа. Последнее достигается превращением ароматических углеводородов топлива в нафтеновые и частично в парафиновые. При этом цетановое число может быть повышено на 20—25 единиц. [c.165]

    Современные схемы неглубокой переработки нефти иногда ие включают установок ни термического, ни каталитического крекинга. Кроме установки перегонки нефти на несколько узких фракций предусмотрена гидроочистка отдельных компонентов и в некоторых случаях более широких фракций, которые затем разделяют на более узкие путем вторичной перегонки. Котельное топливо компаундируют из остатков перегонки и тяжелых дистиллятных компонентов, не подвергающихся гидроочистке. Автомобильный бензин с достаточно высоким октановым числом получают в процессе каталитического риформинга тяжелого бензина прямой перегонки. Однако заводы, сооруженные по такой схеме, как правило, нмеют чисто топливный профиль. При необходимости поставлять сырье для нефтехимического синтеза в состав завода включают крекинг-установки или направляют часть малоценных сернистых дистиллятов на установки пиролиза, принадлежащие нефтехимическим заводам. Подробное направление переработки свойственно некоторым нефтеперерабатывающим заводам Западной Европы, сооруженным в 1960 г. На рис. 116 представлена типичная схема глубокой переработки сернистой пефти. Нефть после двухступенчатой электрообессоливающей установки (на схеме не показана) поступает иа атмосферновакуумную перегонку, в результате которой получается несколько светлых дистиллятов, тяжелый газойль и гудрон. Головку бензина и фракцию реактивного топлива после очистки направляют на смесительную станцию для компаундирования. Фракцию тяжелого бензина подвергают каталитическому риформингу для получения высокооктанового компонента бензина или ароматических углеводородов. Кроме того, риформингу подвергается бензиновый дистиллят коксования. Оба компонента сырья предварительно проходят гидроочистку. Предусмотрена экстракция ароматических углеводородов из жидких продуктов риформинга, которая при получении на установке риформинга бензина служит одновременно для отделения и возврата на повторный риформинг непревращенной части сырья. Полученный экстракт путем ректификации разделяют на требуемые компоненты или углеводороды. Керосиновый дистиллят и легкий газойль проходят гидроочистку и используются после этого как компоненты дизельного топлива. Тяжелый вакуумный газойль подвергают каталитическому крекингу в смеси с газойлем коксования. Для увеличеиия выхода светлых на установке каталитического крекинга предусмотрена рециркуляния. Гудрон поступает на установку коксования жидкие продукты этого процесса являются сырьем для установок каталитического риформинга и каталитического крекинга, о чем было упомянуто выше легкий газойль коксования после гидроочистки использустся как компонент дизельного топлива. Кроме того, на установке получают кокс, который можно [c.356]

    НИТРОМЕТАН СНзЫОз — бесцветная жидкость со своеобразным запахом горького миндаля, т. кип. 101,18°С, малорастворим в воде, хорошо растворяется в большинстве органических растворителей. Н.— простейший представитель класса нитропарафинов. Промышленные методы получения Н. основаны на деструктивном нитровании па-рафи1ювых углеводородов (чаще всего используется пропан). Н. применяют как растворитель, для экстракции ароматических углеводородов из смесей с алифатическими и алициклическими как полупродукт для синтеза хлорпикрина, нитроспиртов, взрывчатых веществ, как добавка к дизельному топливу и как горючее для реактивных двигателей. Н, [c.176]

    Процесс гидрокрекинга используется для производства автомобильных бензинов, реактивного и дизельного топлива, сырья для нефтехимического синтеза и, в частности, для получения бензина с высоким содержанием изоалканов для добавки к бензину риформинга с целью снижения в нем содержания ароматических углеводородов (рис. 7.10). [c.142]

    Процесс гидроочистки применяется для улучшения качества главным образом углеводородов и заключается в том, что углеводороды в присутствии катализатора обрабатывают водородом. После проведения гидроочистки может измениться запах и цвет продуктов, уменьшиться количество выделяюшихся смолистых веществ, повыситься стойкость при хранении, улучшиться топливные характеристики и т.п. Все это происходит в результате удаления связанных серы, азота и кислорода, олефиновых и диолефиновых углеводородов, а также гидрогенизации ароматических колец. Такой обработке подвергаются бензин, лигроин, топливо для реактивных двигателей, керосин, мазут, дизельное топливо, смазочные масла, сланцевые масла, угольные смолы, продукты, полученные из горючих сланцев и т.п. Особенно важно удалить серу из топлива с тем, чтобы предотвратить отравление воздуха образующейся при сго- [c.239]

    Топлива должны сохранять свои эксплуатационные свойства в период транспортирования и хранения. В некоторых топливах содержатся только такие углеводороды и неуглеводородные примеси, которые в обычных условиях в течение длительного времени не взаимодействуют с кислородом воздуха даже в присутствии-каталитически активных металлов (меди, латуни, бронзы). Такие топлива химически высокостабильны и могут храниться в течение нескольких лет, не изменяя эксплуатационных свойств (например, реактивные и дизельные топлива прямой переронки нефти). [c.291]

    Более широко используют диспергирующие присадки (диспер-генты, диспергаторы), предотвращающие засорение топливной аппаратуры нерастворимыми продуктами химических превращений топлив. Присадки такого типа эффективны в реактивных, дизельных и более тяжелых топливах. Диспергенты препятствуют выделению твердой фазы при окислении топлив или изменяют структуру и свойства образующихся нерастворимых продуктов в такой степени, что они свободно проходят через фильтры и не отлагаются в топливной аппаратуре. Диспергирующие присадки удерживают продукты окисления углеводородов и неуглеводородных примесей в коллоидном состоянии, препятствуют коагуляции образовавшихся твердых частиц и их осаждению и часто переводят в раствор уже выпавшие осадки. Диспергенты способствуют сохранению твердых продуктов окисления в растворе, но они не предотвращают самого окисления. Поэтому для получения высокого эффекта диспергенты применяют совместно с антиокислителями или подбирают соединения, обладающие диспергирующими и ан-тиакислительными свойствами. Такие присадки называют стабили-заторами-диспергентами. [c.297]

    Каталитическая гндроочистка применяется для улучшения качества и повышения стабильности нефтеп1)одуктов путем удаления сернистых, азотистых, кислородных, металлорганических соединений, а также насыщения непредельных и ароматических углеводородов. Гидроочистке подвергают почти все нефтяные топлива, как прямогонные, так и вторичного происхождения бензин, керосин, реактивное и дизельное топливо, вакуумный газойль. Процесс гидроочистки применяют также для облагораживания компонентов смазочных масел и парафинов. [c.269]

    Исследования последних лет показали, что сернистые соединения наряду с корродирующими обладают и стабилизирующими свойствами против окисления топлив и образования осадков поэтому их присутствие в топливе в нормируемом количестве может быть полезно. Установлено [1], что соединения с различными серосодержащими функциональными группами, при определенной для каяодой группы концентрации, тормозят процессы окисления углеводородов в топливах. Так, дизельные топлива, содержащие 0,2—0,3% общей серы, при отсутствии меркаптанов, сероводорода и свободной серы в десятки раз стабильнее полностью обессеренных топлив. Реактивное топливо Т-7, содержащее 0,0005—0,001% меркаптанов, обладает меньшей окисляемостью, чем топливо, не содержащее общей и меркаптановой серы. Как отмечают авторы, при гидроочистке реактивных топлив не обязательно сохранять в них не менее 0,001% меркаптанов, так как и другие органические соединения серы имеют антиокислительные функции. [c.50]

    Для улучшения качества продуктов, получаемых при гидрокрекинге, применяются схемы, включаюшие дополнительное гидрирование дистиллятов гидрокрекинга с целью снижения содержания в них ароматических углеводородов. Так, сочетание процессов гидрокрекинга ( Юникрекинг ) и деароматизации ( Юнисар фирмы ЮОПи) обеспечивает производство реактивного топлива с минимальным содержанием ароматических углеводородов или высокоцетанового дизельного топлива. [c.280]

    Гигроскопичность углеводородов топлив уменьшается с увеличением их молекулярной массы. Наиболее гифоскопичен бензин, который способен растворять 0,007 - 0,03% воды, в то время как дизельное топливо - 0,003 -0,02%. Реактивные топлива обладают промежуточной растворяющей способ- [c.68]

    Вторая фракция — керосиновая (смесь углеводородов с Сэ— ie). Кипит в интервале 180—270°С. В пределах 165—200°С перегоняется легкая фракция керосина — yaur- nupur. который применяется как растворитель для масляных красок и других целей. При 230—300°С может быть получено дизельное топливо (легкий газойль, i8—Сгз). Керосиновую фракцию используют как топливо для тракторов и реактивных двигателей. [c.56]

    Легкие бензиновые фракции представляют собой продукт, пригодный для использования в качестве кох шонента смешения для производства автомобильных бензинов, так как имеют достаточно высокое октановое число ЗЗ ИОЧ + МОЧ)/2. Тяжелые бензиновые фракции направляются на установку гидроочистки бензиновых фракций, а затем на установку риформинга, в результате чего получаются дополнительные объемы высококачественных компонентов смешения автомобильных бензинов, повышая тем самым объем производства бензина на предприятии на 18 % Реактивное топливо направляется непосредственно на компаундирование. Гидроочищенный легкий газойль прямой гонки содержит более 20 % ароматических углеводородов. Однако дизельная фракция представляет собой идеальный компонент смешения, так как содержание в нем ароьштики не превышает 15 %. [c.353]

    Для нефтепродуктов характерны некоторые общие закономерности в распределении углеводородов. С увеличением температуры кипения молекулярная масса углеводородов, естественно, увеличивается, структура углеводородов усложняется. В более высококипящих фракциях содержится больше полициклических цикланов и аренов. При переходе от бензинов к реактивным и дизельным топливам количество алканов нормального строения уменьшается, а структура изоалканов становится более разнообразной. Непредельные углеводороды в прямогонных дистиллятах и остатках от перегонки нефти содержатся в весьма небольших количествах. Относительно много непредельных в бензинах, некоторых дизельных топливах и мазутах, получаемых термическим, каталитическим крекингом и другими деструктивными методами, а также компаундированием прямогонных дистиллятов с продуктами деструктивной переработки. Реактивные и прямогонные дизельные топлива и мазуты непредельных углеводородов практически не содержат. Мало непредельных и в большинстве масел. [c.71]


Смотреть страницы где упоминается термин Углеводороды реактивных и дизельных топливах: [c.129]    [c.81]    [c.260]    [c.85]    [c.54]    [c.356]    [c.10]    [c.16]   
Современные и перспективные углеводородные реактивные и дизельные топлива (1968) -- [ c.27 ]




ПОИСК





Смотрите так же термины и статьи:

Дизельное топливо

Топливо реактивное

Топливо углеводородов



© 2025 chem21.info Реклама на сайте