Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции т энтропия активации

    В табл. ХП.1 приводится список величин констант скоростей для бимолекулярных реакций, их экспериментальные энергии активации и предэкспоненциальные множители, полученные на основании вышеизложенных данных. Из таблицы видно, что выражения для констант скорости, полученные из термодинамического уравнения и теории соударений, не позволяют без специальных допущений отдельно определить величины, входящие в эти выражения. Раздельное определение всех величин — частот, энергий активации и энтропии активации — из экспериментальных данных возможно лишь в случае использования теории активированного комплекса, а также уравнения Аррениуса .  [c.247]


    V Влияние температуры. Зависимость скорости реакции от температуры, энергии активации и энтропии активации определяется следующим выражением для константы скорости реакции  [c.198]

    Всякое изменение состояния системы молекул (среднестатистическая функция распределения по уровням энергии) сопровождается стремлением к новому состоянию равновесия (релаксация). Поглощение зв)т<а всегда сопровождается релаксационными процессами, которые могут остановиться в состоянии неустойчивого равновесия (метастабильное состояние). Нахождение вещества в этом состоянии делает его весьма чувствительным к разнообразным трансформациям. В работе [443] показано, что в метастабильном состоянии субстанция склонна к быстрым химическим изменениям. В этой же работе приводятся сведения, что существует прямая пропорциональная связь между константой скорости химической реакции, энергией и энтропией активации и временем релаксации. [c.49]

    Факторы, определяющие константу скорости реакции. Энергия активации. Теория столкновений. Активированные комплексы. Поверхности потенциальной энергии, путь реакции. Теория абсолютных скоростей реакций, переходное состояние, энтальпия и энтропия активации. Реакции замещения, нуклеофильные группы, механизм 814) 1 (диссоциативный), механизм SN2 (ассоциативный). [c.350]

    Таким образом, для осуществления реакции молекулы при столкновении должны быть определенным образом ориентированы и обладать достаточной энергией. Вероятность надлежащей ориентации при столкновении характеризуют с помощью энтропии активации А5 . [c.198]

    Благоприятствует ли быстрому протеканию реакции большая положительная энтальпия активации и большая положительная энтропия активации  [c.395]

    Если считать, что в серии подобных реакций энтропия активации остается постоянной, то левую часть соотношения (19.1) легко связать с экспериментальными константами скорости. Правая часть этого соотношения может быть вычислена. В результате должна наблюдаться линейная корреляция между константами скорости и энергиями локализации, которая подтвердила бы соотношение [c.171]

    Доказательство в теории переходного состояния того факта, что скорость реакции зависит не только от энергии активации, но и от энтропии активации, позволяет объяснить различие в скоростях реакций с близкими величинами энергии активации. Скорость будет выше у той реакции, энтропия активации которой больше. [c.290]


    Но, с другой стороны, положительный знак перед А8 1Н указывает на обратное влияние энтропии активации. Чем больше АЗ. тем больше и скорость реакции. Физический смысл большого значения в том, что переходный комплекс по сравнению с исходными веществами менее компактен — движение в нем более беспорядочно (Эйринг), он представляет собой менее упорядоченную структуру. Интересно, что в ряде случаев переходное состояние мало чем отличается от конечного. Тогда, разумеется, и изменение энтропии при активации Д5 очень близко к изменению Д5 энтропии при самой реакции. Обратим внимание на возможность некоторой конкуренции между двумя множителями, определяющими скорость реакции. Нетрудно допустить, что в какой-либо реакции условия протекания могут оказаться такими, что, например, энтропия активации будет большой и в то же время и энтальпия активации тоже окажется значительной. Практически энтальпия активации очень близка к экспериментально определяемой энергии активации. Это значит, что реакция с большой энергией активации может протекать быстро, если для этой реакции энтропия активации достаточно велика . С другой стороны, возможны и случаи, в которых скорость процесса, идущего с малой энергией активации, снижается за счет уменьшения Д5.  [c.315]

    Энергия активации часто ниже, чем для 5 1-реакций, энтропия активации, напротив, в большинстве случаев значительно большая отрицательная величина (см. стр. ИЗ). [c.129]

    Последнее уравнение дает возможность проверки модели. Можно предположить, что в серии подобных реакций энтропия активации на реакционный центр остается постоянной [3]. Из вышеприведенного уравнения, далее, следует, что логарифмы констант скоростей реакций присоединения на каждый реакционный центр пропори циональны соответствующим энергиям локализации. Это соотношение впервые было получено Коулсоном [4], который откладывал для серии незамещенных ароматических углеводородов log kjn против коэффициента С, ко-горый дает энергию локализации в единицах — 3 (k — константа скорости присоединения метильного радикала и п — число наиболее реакциоиноспособных центров). На рис. 2 представлены полученные нами данные из рисунка видно хорошее совпадение эксперимента и теории. [c.332]

    Стерические взаимодействия в переходном состоянии реакции, как и следовало ожидать, сказываются на энтропии активации. Для реакции 5ы2 у первичного атома углерода принимают переходное состояние структуры 4. Здесь углы между связями, идущими к заместителям у атакуемого атома углерода, меньше, чем в исходном веществе или в продукте. Группы атомов в переходном состоянии располагаются теснее, чем в исходной системе, и следствием этого является ограничение вращения этих групп в переходном состоянии. Это должно становиться более заметным при переходе к более объемистым остаткам К. Для приведенной ниже реакции энтропия активации отрицательна, т. е. скоростьопределяющая стадия является бимолекулярной .  [c.53]

    На основании кинетических данных предполагается, что только одна молекула водорода и один ион Си + участвуют в осуществлении стадии, лимитирующей скорость реакции. Энтропия активации, — 10 энтр. ед., представляет собой нормальную величину для такого простого бимолекулярного процесса, [c.350]

    Протекание реакции благоприятно в кинетическом смысле, если энтропия активации а) больщая и отрицательная, б) небольшая и отрицательная, в) небольшая и положительная, г) большая и положительная. [c.597]

    Такая простая теория соударений предсказывает величину предэкспо-ненциальных множителей порядка 10 см моль сек, поскольку можно ожидать / <1. Величину Р < 1 можно объяснить тем, что не всякое бимолекулярное столкновение, даже в том случае, когда энергия сталкивающихся частиц достаточно велика для того, чтобы частицы прореагировали между собой, приводит к образованию продуктов реакции. Для того чтобы достаточно сложные молекулы прореагировали между собой, они должны быть соответствующим образом ориентированы одна относительно другой (сте-рические препятствия). В теории активированного комплекса соответствующий член носит название энтропийного фактора, и так как энтропия активации становится меньше нуля, то Р не может быть больше единицы. Эти результаты хорошо согласуются с экспериментом, и величина 2ав, по-видимому, действительно является верхним пределом бимолекулярного частотного фактора.  [c.249]

    Авторы рассмотрели и ряд других допущений. Составляющие колебательного движения (не показанные в таблице) сокращаются при 300° К, и ими можно пренебречь, если температуры не превышают 500° К при расчете величины A S ° для этих реакций. Таким образом, значения приведенные в последних двух строках табл. ХИ.З, можно приравнять стандартной энтропии активации, если не учитывать изменения симметрии. [c.256]

    Заметим, что наиболее существенный вклад в энтропию активации, как и следовало ожидать, вносят потери поступательных степеней свободы . Этот вклад растет по мере увеличения различия в массах реагирующих частиц, что видно на примере реакций СНз+НН при переходе от RH=H2 [c.256]


    Для того чтобы совместить эти выражения, необходимо положить Vl = V2, л —и Я — Я = АЯ. Но, поскольку Д , изменение энтропии активации реакции, как известно, положительно, необходима, чтобы <5 > 5 , т. е. энтропия активации прямой реакции была бы больше энтропии активации обратной реакции. Однако это в свою очередь требует того, чтобы предэкспоненциальный множитель к1 был больше предэкспоненциального множителя обратной реакции. Сравнение предэкспоненциальных множителей этих реакций (см. третий столбец табл. ХП.4) показывает, что это действительно так. [c.261]

    К КН=изобутан. Аналогичный результат получается для величины положительной (3,1) для СНз+На и отрицательной для СНз+изобутан (—8,8). Когда реагирующая молекула становится большой по сравнению с атакующим радикалом или атомом, энтропия активации достигает наибольшей предельной величины. Поэтому можно ожидать, что энтропия активации для молекул углеводородов, еще больших, чем изобутан, должна лишь немногим превышать величину, полученную для изобутана. Возможная ошибка вычислений не превышает величин 2—3 кал моль-град для изменения энтропии, что соответствует изменению предэкспоненциального множителя приблизительно в 3 раза. Исходя пз имеющихся в литературе данных по реакциям отрыва атома Н, Байуотер и Робертс нашли, что рассчитанные значения предэкспоненциального фактора вполне удовлетворительно совпадают с экспериментальными данными, отличаясь от последних не более чем в 10 раз. [c.257]

    А5 определяет наиболее благоприятные условия активации молекул и является энтропией активации реакции (О ). [c.34]

    Что дает вычисление энтропии активации из экспериментального значения константы скорости реакции в рамках теории абсолютных скоростей реакции Какие сведения можно получить из таких расчетов относительно механизма реакции  [c.395]

    Какой из двух механизмов, обсуждаемых в двух предшествующих вопросах, должен иметь большую энтропию активации Какое влияние это должно оказывать на скорость протекания реакции  [c.395]

    Предпосылками использования соотношения (2.1) как основы для расчетов активности катализаторов являются следующие а) для одной и той же реакции, протекающей на ряде катализаторов, относящихся к одному и тому же классу соединений (оксидам, металлам и т. п.), либо на одном и том же катализаторе, но с рядом гомологических соединений, энтропия, активации практически не изменяется б) для реакции на поверхности катализатора можно принять PAV = An RT, где Ап — изменение числа молекул при образовании активированного комплекса из реагентов в) теплота активации связана линейными соотношениями с теплотами лимитирующих стадий реакции, поскольку те и другие определяются энергиями разрываемых и образующихся связей. [c.64]

    Качественно сравните энтропии активации реакций [c.147]

    Это значение совпадает по порядку с ZqA/ab для нормальных реакций ZoA ab 10 см /(моль-с). Из (XIII.53) видно, что для нормальных реакций энтропия активации имеет небольшое положительное значение. Как весьма приблизительная, принимается следующая оценка. Если < О, то р С 1 — медленная реакция, если же AS >0, то р > 1 — реакция быстрая. Энтропия активации отражает структурные изменения, а также превращение одних видов.движения в другие (например, превращение вращательного движения в колебательное), которые происходят при образовании активированного комплекса. [c.745]

    Объясните принцип действия катализатора, пользуясь кинетическими теориями, изложенными в данной главе. Что представляет собой активированный комплекс в каталитической реакции Каким образом катализатор влияет на энтальпию агтивации Как он влияет на энтропию активации  [c.396]

    В переходном состоянии изомеризации винилаллилового эфира внутренние вращательные степени сводобы заменяются колебательными. В результате упорядочения активированного комплекса реакция имеет отрицательное значение энтропии активации. В бимолекулярных реакциях энтропия активации, как правило, имеет отрицательные значения. Например, при димеризации 1,3-бутадиена по Дильсу - Альдеру Sj = -51 э. е., а при димеризации циклопеи-тадиена = -111 э. е., что указывает на возрастание упорядоченности активированного комплекса по сравнению с реагентами. [c.139]

    Энтропия активации. Кроме энергии активации важным условием осуществления химической реакции является ориентация молекул в момент столкновения. Нетрудно заметить, что перераспределению электронной плотности в активном комплексе А2...В2 более всего благоприятствует условие, когда при столкиовении молекулы А2 и 83 ориеичированы, как это показа1Ю на рис. 116, а, тогда как при ори- [c.197]

    В противоположность этим случаям, изомеризация винилаллилового эфира до м-пентальдегид-ен-4 (см. табл. XI.3) имеет отрицательную энтропию активации около 8 кал/моль-град. Можно представить, что эта реакция протекает через гипотетический шестичленный колгплекс, показанный в квадратных скобках. [c.228]

    Диссоциация была изучена фотометрически по увеличению коицеитрации N63 при прохождении адиабатической ударной волны через смесь N204 в газе-носителе N3. Данный метод, как признают, является неточным, и в этой системе энергию активации (а следовательно, и частотный фактор) трудно измерить, но, по-видимому, можно ие сомневаться в том, что частотный фактор превышает величину сек 1. Эта реакция Показывает типичную зависимость от давления. Энтропия активации составляет около 10 кал моль-град, И это легко объяснить, если сопоставить указанную величину с полным изменением энтропии в реакции, составляющим около 45 кал моль -град (стандартные условия 25° С, давление 1 атм). Стандартное изменение энтропии, обусловленное поступательным движением, равно 32,4 кал моль-град, и на долю изменения, обусловлеи-ного вращением и колебанием, остается 12,6 кал моль-град. Последняя величина сопоставима с величиной энтропии активации 10 кал моль-град. Это указывает на то, что переходный комплекс подобен скорее свободно связанным молекулам N02, нежели молекуле N204. [c.232]

    Для реакции типа СНз+HR [СНз-НК]- СН4+В, а также для подобных ей реакций отрыва Н атома атомами Н и атомами галогенов был проведен ряд расчетов. Байуотер и Робертс [9] провели подробное сравнение таких реакций для ряда соединений полученные данные позволяют более детально проследить за изменением энтропии активации. В табл. XII.3 приведены величины вычисленных стандартных (при 300° К и 1 атм) молярных энтропий поступательного и вращательного движений комплексов Н или СНз с RH и изменения стандартной энтропии в реакциях H-fHR НгК, Ha-f HR H4R (пренебрегая колебательным движением), найденные этими авторами. [c.256]

    ПО катализатору и по бензилхлориду. При использовании эквимольных количеств реактантов наблюдался ясно выраженный второй порядок вплоть до 80% превращения. Энергия и энтропия активации были 13,9 0,5 ккал/моль и —25,5 1,6 энтр. ед. соответственно. Как и следовало ожидать, исходный противоион в катализаторе оказывал заметное влияние на скорость реакции вследствие конкурентной экстракции. Самая большая скорость наблюдалась с HSO4 , . очень малая — с I и еще меньшая — с IO4-. [c.56]

    Эта реакция, как и бимолекулярная, эндотермична 9=2/)к н—570 кДж/моль. Для углеводородов с /)к н< <350 кДж/моль тримолекулярная реакция более выгодна, чем бимолекулярная. Экспериментально тримолекулярная реакция доказана для тетралина и индена (см. табл. 2.1), а также для ряда непредельных и кислородсодержащих соединений [32]. Следует ожидать, что тримолекулярная реакция будет превалировать над бимолекулярной для углеводородов с 330 кДж/моль [32]. Предэкспоненциальный множитель для трнмолекулярной реакции, естественно, ниже чем для бимолекулярной реакции из-за более высокого отрицательного значения энтропии активации. Поэтому для углеводородов с Оц-н в диапазоне 330<0р-н<350 кДж/моль термохимически выгоднее тримолекулярная реакция, но протекает быстрее бимолекулярная. Для углеводородов со слабыми связями С—И (0к-н<330 кДж/моль) будет преобладать тримолекулярная реакция. Конкуренция между этими двумя реакциями зависит от стерических факторов, которые в большей степени препятствуют протеканию три-, чем бимолекулярной реакции, от полярности среды, которая благоприятствует протеканию тримолеку-лярной реакции, и от температуры, так как при ее повыщении ускоряется в большей степени бимолекулярная реакция (для Дя-н<350 кДж/моль), чем тримолекулярная. [c.39]

    Величина активациошюго барьера реакции определяется двумя факторами-энтальпией активации и энтропией активации. Осуществлению реакции благоприятствует низкий барьер энтальпии и большая положительная (или по крайней мере не отрицательная) энтропия активации. Если активированный комплекс характеризуется намного большей упорядоченностью по сравнению с реагентами, энтропия активации имеет большое отрицательное значение и реакция замедляется. [c.393]

    А5 — энтропия активации), то ориентирующее действие растворителя может привестп к существенному повыгпению скорости жидкофазных реакций по сравнению с газофазными, что и наблюдается в ряде случаев. [c.49]


Смотреть страницы где упоминается термин Реакции т энтропия активации: [c.222]    [c.386]    [c.17]    [c.222]    [c.222]    [c.278]    [c.463]    [c.464]    [c.149]    [c.378]    [c.63]    [c.64]    [c.147]   
Равновесие и кинетика реакций в растворах (1975) -- [ c.97 ]




ПОИСК





Смотрите так же термины и статьи:

Активация реакцйи

Энтропия активации



© 2025 chem21.info Реклама на сайте