Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Марганец колориметрическое

    Взвешивание в виде пирофосфата марганца. Пирофосфатный. метод был предложен еще в 1867 г. и затем несколько позже усовершенствован . Вероятно, он является наилучшим методом весового определения марганца. Метод основан на осаждении фосфата марганца и аммония в слабоаммиачном растворе, содержащем избыток аммонийных, солей, и требует предварительного отделения марганца от элементов, также осаждающихся в этих условиях. Его обычно применяют после предварительного отделения марганца в виде двуокиси марганца и очистки осадка от примесей , как описано на стр. 494., При выполнении очень точных анализов вводят поправки, определяя колориметрически марганец в фильтратах и промывных водах, полученных после выделения сначала двуокиси марганца, потом фосфата марганца. Эти поправки обычно не превышают 0,3 мг марганца в первом фильтрате и 0,2 мг — во втором фильтрате. [c.503]


    Определение марганца в шлаках производят, как правило, из отдельной навески или совместно с определением хрома [441, 686]. Количество марганца < 1% определяют колориметрическим методом, при более высоком содержании марганца применяют титриметрические методы [136, 601]. Марганец определяют также потенциометрическим методом [97, 216]. [c.157]

    Весовые методы определения марганца применяются редко. Обычно марганец взвешивают иди в виде пирофосфата, или в виде сульфата мар-ганца. Определение малых количеств марганца в породах весовыми методами почти всегда приводит к полз чению повышенных результатов. Колориметрические методы определения марганца могут применяться только для определения малых его количеств, такие обычно и встречаются в большинстве пород и минералов. [c.497]

    Полученный раствор переносят в мерную колбу емк. 100 мл и определяют марганец колориметрическим методом (стр. 116) или потенциометрическим титрованием. [c.357]

    После окисления марганца надсернокислым аммонием определение можно выполнить также колориметрическим методом по интенсивности окраски раствора образовавшейся марганцевой кислоты. Однако при колориметрическом методе получаются более надежные результаты, если марганец окисляют перйодатом калия по уравнению [c.176]

    Мы попытались определять марганец колориметрически, путем окисления его персульфатом аммония непосредственно в присутствии висмута. [c.210]

    Все осадки кальция и магния после взвешивания были проверены на марганец колориметрически. Найденные количества марганца в среднем колебались в пределах пятого знака, не достигая 0,0001 г, что, конечно, не имеет никакого практического значения. [c.108]

    Как видно из таблиц, результаты получаются вполне удовлетворительные. Отделение проходит за один прием, к переосаждению осадка с целью извлечен ия адсорбированных кальция и магния прибегать не приходится. Все осадки кальция и магния после взвешивания были проверены на марганец колориметрически. Найденные количества марганца в среднем колебались в пределах пятого знака, не достигая 0,0001, что, конечно, не имеет никакого практического значения. [c.118]

    В полученном растворе определяют марганец колориметрическим методом (см. т. I, стр. 158). [c.281]

    В полученном растворе определяют марганец колориметрическим методом (см. т. I, стр. 158) или объемным персульфатно-арсенитным методом (см. т. I, стр. 161). [c.320]

    Колориметрический анализ отличается высокой чувствительностью. Так, например, количество марганца порядка ЫО г, которое невозможно взвесить на аналитических весах, легко можно определить колориметрическим методом. Для этого марганец переводят в перманганат и измеряют интенсивность окраски полученного раствора. Таким путем можно определить даже ЫО г марганца в 5 мл раствора. [c.215]


    Ход определения по Пршибилу и Малику [5]. К нейтральному раствору соли двухвалентного кобальта (0,5—5 мг Со) прибавляют достаточное количество 5%-ного раствора комплексона, 6 мл 0,1 н. раствора едкого кали я 2 мл перекиси водорода. Раствор нагревают до кипения и кипятят (достаточно 1 мин.). После охлаждения и доведения объема до 100 мл определяют светопоглощение в фотоколориметре с зеленым светофильтром (540 мр.). Окраски подчиняются закону Ламберта—Беера в сравнительно узком интервале концентраций от 0,1 до 1,1 мг Со/100 мл (при толщине кюветы 34 мм). Но если содержание кобальта не превыщает 5 мг в 100 мл, то по калибровочной кривой можно получить удовлетворительные результаты. Бесцветные катионы (включая двухвалентный марганец) определению не мешают. Мешают окрашенные катионы, которые должны быть предварительно удалены (например, медь — сероводородом, железо — ацетатным методом, хром — переведением в хромат в щелочной среде). Выпавшую в осадке гидроокись кобальта (III) растворяют и определяют кобальт в полученном растворе колориметрическим методом. [c.187]

    Если присутствуют марганец, кобальт и т. п., то для лучшего отделения можно прибавить цианид . Следы марганца и кобальта, захваченные осадком, можно затем определить в нем колориметрическими методами. [c.864]

    Ранее [11] определяли медь и кобальт в слюне колориметрическим методом, железо, медь, марганец и никель—методом хроматографии на бумаге [12]. [c.179]

    Практически установлено, что колориметрическому определению меди не мешают железо, марганец, и хром, цинк, свинец и др. в любых количествах, а также никель и кобальт при содержании соответственно до 10 и 20 жг в 1 мл. [c.210]

    Объемному и колориметрическому определениям марганца мешают церий, хром, ванадий, которые окисляются перйодатом калия или персульфатом аммония с образованием окрашенных ионов. Для их отделения марганец осаждают сульфидом аммония в присутствии тартрат-иона. Если марганца мало, то в качестве коллектора к раствору добавляют 1—2 мг железа (III). [c.190]

    Затем остаток обрабатывают соляной кислотой и переводят в раствор обычным методом осаждают элементы группы полуторных окислов вместе с марганцем (пользуясь бромом). Тогда R2O3 может быть исправлено на количество марганца, прибавленного в виде перманганата калия при определении FeO. Прокаленные R2O3 после взвешивания сплавляют с пиросульфатом и в полученном растворе определяют железо и титан. Определение фосфора из аликвотной части этого раствора не рекомендуется делать по причине, указанной на стр. 175. Нецелесообразно также определять марганец колориметрически в аликвотной части этого раствора, вычитая добавленный для титрования FeO перманганат, и таким образом по разности получать содержание марганца в самом образце. [c.178]

    Устаиовив условия количественного осаждения индия и галлия, мы перешли к выяснению возможности отделения их от марганца, никеля, кобальта и цинка. Вначале были поставлены опыты по отделению индия. Определение двухвалентных металлов в фильтратах не проводилось, а определялось их количество, остающееся в осадках основных коричнокислых солей индия. Для этого осадки подсушивали и осторожно озоляли в кварцевом тигле. Для определения марганца полученную окись индия растворяли при нагревании в азотной кислоте и определяли марганец колориметрически персульфатным методом. Для определения никеля, кобальта и цинка полученные после прокаливания окиси растворяли при нагревании в соляной кислоте никель и кобальт определяли колориметрически, первый с диметилглиоксимом, второй с нитрозо-Р-солью. Цинк определяли нефелометрически с хинальдиновой кислотой но разработанному нами методу, связывая индий в комплекс лимоннокислым натрием. [c.37]

    После взвешивания осадок MggPgO необходимо проверить на содержание в нем марганца, так как последний осаждается с фосфатом магния-аммония и взвешивается в виде пирофосфата марганца MngPaO - Д я этого осадок пирофосфата магния растворяют в тигле при нагревании в разбавленной азотной или серной кислоте. Раствор переводят в стакан, разбавляют водой до 50—75 мл и определяют марганец колориметрическим методом (см. т. I, стр. 158). [c.249]

    В полученном растворе определяют марганец колориметрическим методом (см. стр. 116) или объемным нерсульфатно-арсенит-ным методом (см. стр. 115). [c.390]

    Если в фильтрате присутствовал марганец и если ири осаждении полуторных окислов не были приняты специальные меры для осаждения марганца (см. подстрочное примечание на стр. 467), то большая часть марганца осаждается вместе с магнием. В этом случае осадок М 2Р20, необходимо растворить в концентрированной азотной кислоте, и марганец определить колориметрически. [c.469]

    Для колориметрического определения марганца применяют маи-ганон ИРЕ А (салицилаль-о-аминофенол) [2761, который дает возможность определять марганец в присутствии ионов Fe(III), Ni(II), Сг(Ш), Mg(II), Ba(II), Al(III), d(II), As(III), Ag(I), Mo(VI), Zn(II), Hg(II) при отношении Mn Me от 1 50 до 1 200. В присутствии больших количеств Fe(III), Ni(II) и Се(Ш) необходимо добавить тартрат натрия или калия. Чувствительность определения 0,25 мкг Мп/5 мл. Метод применяют для определения марганца в солях щелочных металлов. [c.70]


    Для определения общего содержания всех форм марганца в питьевых, поверхностных и сточных водах предлагается колориметрический метод, в котором марганец(11) окисляют до перманганата персульфатом. Раздельное определение нерастворимых и растворимых форм марганца проврдят, определяя его в нефильтрованной и в профильтрованной пробах. [c.267]

    Содержание марганца в различных железных рудах колеблется от тысячных долей процента до целых процентов. При содержании <1% марганец определяют колориметрическим методом — окислением К104 или (N1 14)28208, а при более высоком содержании — титриметрическим методом [298, 527]. Применяют также методы потенциометрического титрования [97] и др  [c.156]

    Ход анализа. Навеску 2 г металла растворяют при нагревании в смеси. 25 мл серной (1 5) а 5 мл фосфорной кислот, после растворения навески окйсляют железо азотной кислотой, упаривают до дыма, охлаждают, прибавляют 50 мл воды, 5 мл 1%-ного раствора нитрата серебра, нагревают до кипения и окисляют хром и могущий присутствовать в пробе марганец 10 мл 10%-ного раствора персульфата аммония. Избыток персульфата удаляют кипячением, а марганцевую кислоту восстанавливают хлоридом натрия (5 мл 5%-ного раствора). После охлаждения титруют раствором соли Мора, концентрация которого определяется количеством хрома в титруемом растворе. Можно титровать либо весь раствор, либо, переведя его в мерную колбу, титровать только аликвотную часть (в зависимости от содержания хрома и от взятой навески). Из этого же раствора можно определять и ванадий, как указано в соответствующем разделе. Описанным методом определяют от 0,03 до 0,15% хрома в различных чугунах, сталях и в стандартном образце стали № 20-Г. Метод считается наилучшим (по сравнению с колориметрическим или обычным объемным) методом определения хрома. [c.339]

    Метод колориметрического титрования особенно удобен в тех случаях, когда окраска развивается быстро. Если реакция переведения определяемого иона в окрашенное соединение требует длительного времени или сложной обработки (кипячение, фильтрование и т.п.), но сам окрашенный раствор устойчив во времени, поступают следующим образом известное количество определяемого вещества заранее переводят в окрашенное соединение и затем разбавляют до определенного объема и получают, таким образом, окрашенный стандартный раствор титрование проводят этим окрашенным стандартным раствором до уравнивания окрасок. Например, так можно определять марганец, применяя для титрования стандартный раствор КМПО4. Метод колориметрического титрования очень прост, выполняется быстро и широко применяется в производственных лабораториях для определения алюминия, молибдена, ниобия, нитритов и др. Точность метода при некотором навыке вполне удовлетворительна (2—5% относительных). Метод колориметрического титрования особенно удобен при единичных анализах, так как требует небольшого расхода реактивов и времени. [c.30]

    Метод колориметрического титрования особенно удобен в тех случаях, когда при переведении определяемого иона в окрашенное соединение окраска развивается быстро. Если же реакция требует длительного времени или сложной обработки (кипячение, фильтрование и т. п.), но сам окрашенный раствор устойчив во времени, поступаю иначе. Известное количество определяемого вещества заранее переводят в окрашенное соединение, затем разбавляют до определенного объема и получают окрашенный стандартный раствор. Титрование проводят этим раствором до уравнивания окраски с анализируемым раствором. Например, так можно определять марганец, применяя для титрования стандартный раствор КМПО4. [c.30]

    Содержание марганца определяют также колориметрическим способом (персульфатным). Предварительно для удаления хлоридов, затрудняющих проведение эксперимента, добавляют сернокислую ртуть, что приводит к образованию малорастворимой соли Hg l2. Затем весь имеющийся в растворе марганец переводят в перманганат под дейст-впем персульфата в присутствии ионов серебра, которые служат катализатором  [c.32]

    При изучении микроэлементов эмбинских нефтей установлено, что в них содержатся ванадий, никель, медь, марганец, титан, галлий, германий, кальций, магний. Нами определены индий и бериллий в зольных остатках нефтей месторождений Косчагыл, Каратон, Тереньузюк. Колориметрический метод анализа Ве основан на реакции с бериллоном, чувствительность составила 4 10- %. Колориметрическое обнаружение индия заключается в измерении интенсивности окраски оксихинолята индия, растворенного в хлороформе. Чувствительность метода равна Ы0" % [c.292]

    Хннализариновый метод. Галлий можно определить колориметрическим методом, основанным на его реакции с хинализарином в результате которой образуе тся лак, окрашенный в розовый до аметистового цвет. Эта реакция весьма чувствительна (можно открыть 0,02 мг1л галлия), но крайне н специфична, и при ее применении требуется предварительное отделение от галлия многих посторонних металлов. Наилучшие результаты получаются при pH раствора, равном 5, и содержании в растворе ацетата аммония (1 н.) и хлорида аммония (0,5 н.). В этих условиях влияние алюминия, бериллия, титана, циркония, тория, редкоземельных металлов олова (IV), таллия (III) и других элементов можно устранить введением фторида который, однако, нё препятствует реакции хинализарина с железом (III), оловом (II), сурьмой (III), медью, свинцом, индием, германием, ванадием (IV) и (V) и молибденом (VI). При pH = 5 магний, марганец, железо (II), ртуть (II), таллий (III), Кадмий, вольфрам, уран (VI) [c.556]

    Учитывая исследования Стейгера в настоящее время в Геологическом управлении США применяют такой метод осаждения алюминия и т. п., при котором марганец не осаждается. Метод этот состоит в том, что общее содержание марганца определяют в отдельной навеске, а в массу пирофосфата магния вносят поправку на содержащийся в нем марганец, который определяют колориметрическим способом. Этот метод допустим, потому что, как указывает табл. 35, ббльшая часть марганца остается в растворе, пока не осадят вместе с магнием в виде фосфата, а ошибки, приходящиеся на окись алюминия и окись кальция, очень малы. Загрязнение прокаленного оксалата кальция даже малым количеством ма])ганца обнаруживается обычно по коричневому окрашиванию, которое придают ему окислы марганца, а иногда по зеленому цвету манганата кальция. [c.960]

    Из новых работ отметим работу Сендэла и Перлиха но определению никеля и кобальта в силикатных породах. Определение никеля основано на осаждении его диметилглиоксимом из аммиачно-тартратного раствора анализируемой породы, экстрагировании полученного соединения хлороформом, взбалтывании хлороформного слоя с соляной кислотой для переведения никеля в воДную фазу и конечном его определении колориметрическим методом с диметилглиоксимом (см. стр. 468, сноска 2) при концентрации его, не превышающей 6 мкг в 1 мл. Этим методом можно обнаружить 0,0001% никеля в 0,5 г пробы медь, кобальт, марганец, хром и ванадий в количествах, в каких эти элементы встречаются в большинстве изверженных горных пород, определению никеля не мешают. [c.1034]

    Закись марганца определяется только в том случае, если она содержится в сырьевых материалах. Обычно закись марганца определяют в огнеупорных материалах колориметрически. Навеску огнеупорного материала сплавляют с содой и выщелачи вают азотной кислотой двухвалентный марганец окисляют персульфатом аммония до марганцевой кислоты, которую определяют колориметрически  [c.59]

    Согласно наблюдениям Lauba h a, для колориметрического определения никкеля наиболее пригодна окраска, свойственная следующим ник-келевым солям азотнокислой, сернокислой, уксуснокислой и хлористому никкелю, раствэры которых при одинаковых концентрациях никкеля окрашены одинаково интенсивно. Цинк и марганец не влияют на колориметрическое определение Ni, тогда как кобальт и железо вредят ему.  [c.266]

    Методы определения кальция и магния практически совпадают с приведенными в предыдущих параграфах. Отдельные варианты различаются главным образом способами разложения анализируемых проб в зависимости от их химического состава. Различные отклонения в методах, имеющиеся при отделении мешающих элементов, часто бывают вызваны личными вкусами того или иного исследователя. Так, например, при анализе силикатов Бэнкс [27] рекомендует выделять железо, алюминий и марганец добавлением аммиака и бромной воды, после чего в аликвотных порциях фильтрата определять кальний и магний по разности в результатах двух титрований в присутствии мурексида и эриохрома черного Т. Беккер [28] точно также осаждает полуторные окислы аммиаком при анализе цементов. Аналогично поступает и Хабёк [29]. При анализе шлаков и руд Граус и Цёллер [30] рекомендуют после растворения пробы и выделения кремнекислоты осаждать тяжелые металлы в мерной колбе сульфидом аммония. После доведения объема раствора до метки достаточно профильтровать только его часть и определить в нем суммарное содержание кальция и магния или содержание одного только кальция. При проведении таких анализов не следует ограничиваться только комплексометрическим определением кальция и магния. Другие присутствующие в растворе катионы в зависимости от их концентрации можно определять комплексометрически (А1, Ре), колориметрически (Т1, Ре), полярографически или воспользоваться методом фотометрии пламени (щелочные металлы). Такой количественный полумикрометод полного анализа силикатов описывают Кори и Джексон [31]. Пробу силиката разрушают плавиковой кислотой или сплавлением с карбонатом натрия. В зависимости от способа разложения пробы в соединении с известными операциями разделения (осаждение аммиаком, щелочью и т. п.) они методом фотометрии пламени определяют натрий и калий, колориметрически — кремнекислоту молибдатом аммония, железо и титан раздельно с помощью тирона, алюминий — алюминоном и, наконец, кальций и магний комплексометрическим титрованием. За подробностями отсылаем читателя к оригинальной работе авторов метода. О некоторых полных анализах сили- [c.453]

    Мы не можем касаться здесь аналитической техники определения кислорода. Из реагентов, применяемых для этих целей, можно назвать белый фосфор, органические поглотители кислорода (такие, как пирогаллол или лейкосоединения красителей), медь, гипосульфит натрия и хлористый хром. Для растворов самым распространенным является, повидимому, метод Винклера в нем кислород используется для освобождения эквивалентного количества хлора (через промежуточную систему двухлористый марганец — треххлористый марганец), который легко может быть определен путем титрования иодистым калием и тиосульфатом. Если для определения кислорода применяются пирогаллол или лейкосоединения красителей (белое индиго, лейкометиленовый синий), процесс освобождения кислорода может быть прослежен колориметрически или спектрофотометрически. Подобная же методика применима при превращении гемоглобина в оксигемоглобин такой метод определения кислорода был впервые введен при исследовании фотосинтеза Хоппе-Зейлером [5] и позже использован Хиллом [64, 74]. Для тех же целей Остергаут [23, 24] предложил использовать кровь краба, содержащую гемоцианин и синеющую в присутствии кислорода. [c.254]

    Фосфат- и арсенат-ионы осаждают уран, но если тройной ацетат растворяют в воде, чтобы провести колориметрическое определение, фосфат и арсенат уранила остаются нерастворенными их отделяют фильтрованием или центрифугированием раствора. Молибден (VI) также осаждается в виде молибдата уранила его можно связать в комплекс добавлением цитрата или тартрата.Ме-шают оксалат-ионы. Фторид-ионы не мешают, но если проба содержит алюминий, может выпасть осадок NasAlFe. Магний, кобальт, никель и марганец могут заменить цинк в составе тройного ацетата на результате колориметрического определения это не отразится, но при весовом окончании определения результат получится неправильным. Некоторые металлы выпадают в осадок в виде гидроокисей. [c.910]

    Применению колориметрического метода мешают хром, двухвалентное железо, медь, кобальт, которые в этих условиях имеют собственную окраску или образуют окрашенные соединения с диметилглиоксимом, а также значительные количества марганца (выше 4—5%), магния (выше 6%) и кальция. Марганец, окисляясь в щелочном растворе, образует темную муть марганцеватистой кислоты, а магний осаждается в виде белой гидроокиси. Влияние этой гидроокиси можно устранить добавлением трилона большие количества марганца необходимо предварительно отделить. [c.216]

    К раствору после титрования тиосульфатом натрия прибавляют 25%-ный аммлак в небольшом избытке, выделившийся осадок магния и марганца отфильтровывают через маленький фильтр, промывают 1%-ным раствором аммиака, помещают в фарфоровый тигель, бумагу сжигают и остаток сплавляют с пиросульфатом калия. Сплав растворяют в 2—3 мл 2 н. серной кислоты, марганец опргделяют колориметрически, как описано на стр. 195, и вносят поправку в определение магния. [c.187]


Смотреть страницы где упоминается термин Марганец колориметрическое: [c.724]    [c.170]    [c.240]    [c.20]    [c.663]    [c.89]    [c.272]    [c.89]    [c.455]    [c.538]   
Практическое руководство по неорганическому анализу (1966) -- [ c.159 , c.505 , c.962 ]

Химико-технические методы исследования (0) -- [ c.230 ]

Методы аналитической химии Часть 2 (0) -- [ c.293 ]

Количественный микрохимический анализ минералов и руд (1961) -- [ c.194 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.146 , c.463 , c.881 ]

Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.243 , c.706 , c.733 ]




ПОИСК







© 2024 chem21.info Реклама на сайте