Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Родий нитраты

    Написать химические формулы солей гидросульфид кальция, сульфид железа (И), сульфит натрия, сульфат железа (И1), бисульфит меди (I), дигидрофосфат меди (И), бикарбонат кальция, гидрофосфат железа (И1), сульфат алюминия, нитрат лантана (И1), ортоарсенат алюминия, сульфат палладия (II), нитрат родия (III). [c.47]


    Азотная кислота действует почти на все металлы (за исклю-ением золота, платины, тантала, родия, иридия), превращая их нитраты, а некоторые металлы — в оксиды. [c.413]

    Нитробензол нитруется значительно труднее, чем бензол, так как нитрогруппа является сильным ориентантом II рода. Поэтому нитрование нитробензола производят в более жестких условиях, при более высокой температуре (90"") и действии нитрующей смеси из концентрированной азотной и концентрированной серной кислот или нитрата натрия и кон--центрированной серной кислоты  [c.31]

    Альдегидная и кетонная группы также являются ориен-тантами И рода, обусловливают вступление нитрогруппы преимущественно в л1-положение и необходимость проведения реакции в жестких условиях. Однако л1-(ориентирующее влияние карбонильной группы выражено не столь отчетливо, как у других ориентантов II рода, например у нитрогруппы бензойный альдегид нитруется нитратом калия в концентрированной серной кислоте при 0 + 5° или безводной азотной кислотой при —10—0° и образующийся л1-нитробензальдегид легко отделяются от сопутствующего ему о-изомера (до 20%) кристаллизацией [c.45]

    Родий (III) нитрат см. Родий (III) азотнокислый [c.427]

    В подобного рода экспериментах важно, чтобы анионы соли, используемой для изменения ионной силы, не образовывали комплексных ионов с изучаемыми ионами. Для этого наиболее удобны растворы перхлората или нитрата калия. [c.295]

    Получение полимеров с новыми свойствами за счет химических превращений функциональных групп макромолекул (химическая модификация полимеров). Классическим примером такого рода превращений является получение разнообразных производных целлюлозы (ацетата целлюлозы, нитрата целлюлозы и др.). [c.59]

    Растворимость твердых веществ в жидкостях зависит от роды растворяемого вещества и растворителя, от температуры и может изменяться в очень широких пределах. Так,- в - 1ф воды при комнатной температуре растворяется 222 г нитрата серебра, 88 г нитрата натрия, 36 г хлорида натрия и тоЛько 0,00015 г хлорида серебра. [c.77]

    Выделение кислорода свидетельствует о присутствии перекисных соединений, нитратов, хлоратов, перманганатов и других богатых кислородом соединений двуокиси углерода — о присутствии карбонатов и органических соединений окиси углерода — о присутствии оксалатов и других органических соединений окислов азота — о присутствии нитратов и нитритов выделение хлора, брома и иода — о присутствии хлоридов, бромидов и иодидов, гипохлоритов, хлоратов, броматов, иодатов и других подобных соединений выделение аммиака свидетельствует о присутствии солей аммония, цианидов, рода-нидов и т. п. [c.60]


    Большинство видов бактерий, подобно грибам и животным, по типу питания относится к хемогетеротрофам, т. е. используют энергию, выделяющуюся при распаде органических веществ. Некоторые гетеротрофные бактерии — анаэробы. Это означает, что они разлагают сложные органические соединения (например, сахара) при полном отсутствии кислорода. Указанный процесс называется брожением. Некоторые анаэробы окисляют органические соединения, используя неорганические окислители, в частности нитрат (денитрифицирующие бактерии) или сульфат (сульфатредуцирующие бактерии). Для ряда анаэробных бактерий, относящихся главным образом к роду lostridium, кислород токсичен, их называют облигатными анаэробами. Другие, в том числе Е. ali, относятся к категории факультативных анаэробов это означает, что они способны расти как в присутствии, так и в отсутствие кислорода. Облигатные аэробы используют в качестве источника энергии процессы окисления органических соединений кислородом воздуха. [c.23]

    Два рода почвенных бактерий превращают ионы аммония в нитрит и нитрат [уравнения (10-24) и (10-25)] ) [ИЗ]  [c.426]

    Водородный электрод нельзя считать универсальным при использовании в органических растворителях, так как его воспроизводимость низка в результате отравления поверхности платины. Поэтому наиболее щирокое распространение получили электроды, состоящие из серебра и растворимой соли серебра (например, нитрат серебра) или нерастворимой соли серебра (хлорид или хромат серебра). В апротонных растворителях, устойчивых по отнощению к литию, используется литиевый электрод сравнения, потенциал которого даже при наличии окисной пленки хорошо воспроизводим, так как токи обмена на щелочных металлах имеют высокое значение. Большую группу электродов сравнения составляют амальгамные электроды из щелочных, щелочноземельных и других металлов Ыа, К. Са, 2п, Сё, Ре и другие, которые в основном используются для термодинамических измерений. Использование амальгамных и металлических электродов как электродов второго рода в органических растворителях ограничено, так как покрывающая соль металла часто оказывается растворимой в присутствии одноименного аниона. [c.9]

    Окись родия, RhaOa, получают нагреванием порошкообразного металлического родия, нитрата родия Rh(N03)a или хлорида родия Rh lj на воздухе при 800°, [c.641]

    Интересные асимметрические синтезы иного рода описаны Шрайнером и Паркером. При действии -октил-(2)-нитрата на неактивный 1-метилциклогексанон-4 образуется оптически активный 2-нитро-4-метилциклогексанонкалий  [c.139]

    С, т. кип. 86° С. Смешивается с водой во всех отношениях. Азеотроп-ная смесь с водой содержит 68,4% НХОз и кипит при 121,9° С. Обычная 96—98%-ная НКОз — жидкость красно-бурого цвета. А. к. — сильный окислитель, реагирует почти со всеми металлами, образуя с ними соответствующие оксиды или соли — нитраты и выделяя оксиды азота. Устойчивы к действию А. к. золото, платина, родий, иридий и тантал. Такие металлы, как железо, хром, алюминий, пассивируются концентрированной А. к. за счет стойкости к действию А. к. оксидной пленки, образующейся на ее поверхности. Концентрированная А. к. окисляет серу до серной кислоты, фосфор — до фосфорной. Многие органические соединения под действием А. к. разрушаются и воспламеняются. Разбавленная А. к. более слабый окислитель, чем концентрированная продуктами восстановления ее сильными восстановителями могут быть гемиоксид азота, свободный азот н нитрат аммония. В лаборатории А. к. получают действием на ее соли концентрированной N3804 при нагревании. В промышленности разбавленную (45—55%) А. к. получа- [c.11]

    В пределах этого ограничения метод ДТА широко используют для идентификации индивидуальности химических соединений, поскольку переходы первого рода присущи всем без исключения веществам, как простым, так и сложным. В качестве примера на рис. 3.1 приведена термограмма нитрата аммония ЫН4ЫОз. Полиморфные переходы а->р, р->-7, у->-б и плавление нитрата аммония проявляются в виде площадок (остановок температуры) на кривых зависимости 7 =/(т), а также всплесками на кривых зависимости АГ=/(т). [c.67]

    Элементы второй вертикальной диады — родий и иридий — обнаруживают определенное сходство с кобальтом. Как и последний, эти элементы, особенно родий, склонны к проявлению степени окисления +3. Иридий, помимо этого, проявляет степени окисления +6 и +4, которые для родия менее характерны. Степень окисления +8 для этих двух элементов не существует. При нагревании на воздухе металлического родия или при прокаливании его нитрата образуется черно-серый порошок КЬзОз, изоморфный корунду V АиОз. Диоксид КЬОа в свободном состоянии неизвестен, однако [c.420]

    Соли металлов семейства платиноидов немногочисленны. В соответствии с общей тенденцией понижения характерных степеней окисления в горизонтальных триадах наблюдается следующая закономерность. Элементы первой вертикальной диады Ки и Оз, у которых стабильными являются высокие степени окисления, вовсе не образуют солей, где они выступали бы в качестве катионообразователей. Для элементов второй диады — родия и иридия — известны солеобразные производные, отвечающие степени окисления +3, главным образом сульфаты КЬг (804)3 -ИНзО и 1гз (804)3 -бНгО, а также двойные сульфаты типа квасцов [в чем проявляется горизонтальная аналогия со многими элементами в степени окисления +3 — А1 (+3), Ре (+3), Сг (+3) и т. п.1. Отметим, что стабилизация этих солей обусловлена образованием кристаллогидратов — аквакомплексов. Более многочисленны солеобразные соединения элементов третьей диады — палладия и платины, отвечающие главным образом их степени окисления +2. Так, получены Э804-2Н20, Э(МОз)з-21 20, 3(0104)2-41 20. Известен также ацетат палладия Р(1 (СН3СОО)2. Соли слабых кислот, не содержащие кристаллизационной воды, термически нестабильны. В избытке реагентов, включающих одноименный анион, они легко образуют комплексные соединения. Для степени окисления +4 существуют лишь малостойкие нитраты Э(КОз)4. [c.423]


    При давлении водорода 1-3 атм и температуре 25-50 °С на платиновых катализаторах ароматические углеводороды восстанавливаются с отличными выходами, хотя и сравнительно медленно. 0,2 Моль соединения в уксусной кислоте гидрируются с 0,2 г оксида платины в этих условиях за 2-26 ч. Время реакции резко сокращается с увеличением давления (до 12-30 мин при 215 атм). Скорость восстановления на родиевых катализаторах выше, чем на платиновых. Так, бензол на КЬ-А Оз (5 % КЬ) при прочих равных условиях реагирует в 4 раза быстрее, чем на аналогичном платиновом катализаторе. Предложен смешанный катализатор КЬ02-РЮ2, получаемый сплавлением хлорида родия и хлороплатиновой кислоты (3 1) с нитратом натрия (подобно катализатору Адамса) и позволяющий проводить гидрирование с приемлемой скоростью при атмосферном давлении и температуре 25 °С. Проиллюстрировать преимущества этого катализатора можно на примере гидрирования толуола в метилциклогексан (при 25 °С)  [c.51]

    Карбоксильная группа—сильный ориентант II рода и потому нитрование бензойной кислоты должно проводиться в довольно жестких условиях—действием дымящей азотной кислоты, нитрующей смеси или нитратов щелочных металлов в концентрированной серной кислоте. Основным продуктом нитрования бензойной кислоты является и-нитробензой-ная кислота (см. табл. 4)  [c.44]

    Авторы установили, что нитрат ацетонциангидрина является единственным в своем роде нитруюшрм агентом аминов в щелочной среде. [c.425]

    В табл. 18 рассматривается взаимодействие урана, тория плутония и продуктов деления с химическими реагентами, обычно применяемыми для выделения и очистки плутония из облученного урана. Поскольку на практике чаще всего приходится иметь дело с азотнокислыми растворами, то данные таблицы относятся именно к таким растворам. При этом предполагается, что в ис ходном растворе присутствуют уран в виде и02(Н0з)2 церий — в виде смеси трех- и четырехвалентных соединений цезий, стронций, барий, все редкоземельные элементы, итт.рий, родий — в виде нитратов цирконий—в виде нитрата циркония ниобий— [c.265]

    КАЛЬЦИЕВАЯ СЕЛИТРА, то же, что кальция нитрат. КАЛЬЦИЙ (от лат. alx, род. падеж al is-известь лат. al mm), Са, хим. элемент II гр. периодич. системы, относится к щелочноземельным элементам, ат. н. 20, ат. м. 40,08. Прир. К. состоит из шести стабильных изотопов - Са (96,94%), - Са (2,09%), Са (0,667%), Са (0,187%), Са (0,135%) и " a (0,003%). Поперечные сечения (10 м ) захвата тепловых нейтронов изотопов с мае. ч. 40, 42, 44, 46 и 48 равны соотв. 0,22, 40, 0,63, 0,25 и 1,1. Конфигурация внеш. электронной оболочки 4s степень окисления +2, очень редко +1 энергии ионизации Са - Са - Са соотв. равны 6,11308 и 11,8714 эВ электроотрицательиость по Полингу 1,0 атомный радиус 0,197 нм, ионный радиус (в скобках указано координац. число) Са 0,114 нм (6), 0,126 нм (8), 0,137 нм (10), 0,148 нм (12). [c.293]

    Азотная кислота HNO3— бесцветная жидкость с резким запахом, гигроскопична, кипит при 84 °С, хорошо растворима в воде. Разбавленная А. к. проявляет все свойства одноосновных кислот. Концентрированная (96—98 %) HNO3 красно-бурого цвета от присутствия в ней NOa-Ha свету и при нагревании HNO, разлагается на N0-2, О2 и HjO. Концентрированная А. к.— один из самых сильных окислителей, реагирует почти со всеми металлами (за исключением золота, платины, иридия, родия) с образованием нитратов, при этом выделяются оксиды азота. Алюминий, железо и хром легко взаимодействуют с разбавленной А. к., но практически не реагируют с концентрированной кислотой вследствие образования на поверхности защитного тонкого слоя оксида металла. А. к. взаимодействуют со многими неметаллами, а также оргащтческими соединениями. В промышленности А. к. получают из аммиака. А. к. применяется в производстве азотных удобрений, взрывчатых веществ, лекарств, красителей, пластических масс, искусственных волокон, как окислитель в реактивных двигателях и др. [c.8]

    Реакцию (5.3) осуществляют бактерии рода Nitrosomonas, при этом они переводят азот аммонийных солей в азот нитритов, а реакцию (5.4) — окисление азота нитритов в азот нитратов проводят бактерии рода Ы11гоЬас1ег. [c.160]

    Известно, что при растворении органических соединений, содержащих карбонильную группу, в концентрированной серной кислоте наблюдается ярко выраженное явление галохромии, тогда как в случае нитропроизводных таких соединений это явление отмечается в меньшей степени (Как пример такого рода солеобразования можно привести то обстоятельство, что фенантренхинон в отличие от тринигрофенантренхинона способен к образованию нитрата). Это свойство карбонильных соединений нередко позволяет путем простой пробы в пробирке быстро установить, способно ли данное вещество к нитрованию или нет. В особенности эта реакция применима для ненасыщенных кетоновое. Так, например, некоторые карбонильные соединения и их нитропроизводные рас- [c.200]

    Отбирают пипеткой 25,0 мл приготовленного раствора хлорида натрия в колбу для титрования, добавляют 25мл роды и 1 мл 10 %-ного раствора хромата калия К2СГО4. Титрование следует вести в присутствии свидетеля . Для приготовления свидетеля в такую же колбу отбирают 25 мл раствора хлорида натрия, добавляют 25 мл воды и 1 мл 10 %-ного раствора хромата калия. Добавляют из бюретки 2—3 мл раствора нитрата серебра. [c.170]

    Электроды, селективные к кальцию, обратимы но отношению к этому иону и реагируют па ион ка льция с высокой чувствительностью. Титруют кальцпй комплексонами с этим электродом при pH 10 [1541]. Определению не мешают щелочные металлы [1632], а также катионы аммония и анионы галогенидов, цианиды, рода-виды, ферроцианиды, нитраты, нитриты, сульфаты, хроматы, перхлораты, бикарбонаты и арсенаты. Катионы Ва, М и Zn количественно титруются вместе с кальцием. Мешают фосфаты, карбонаты, оксалаты. При pH 12 кальций можно титровать в присутствии магния [1004]. [c.73]


Смотреть страницы где упоминается термин Родий нитраты: [c.135]    [c.161]    [c.147]    [c.9]    [c.99]    [c.372]    [c.427]    [c.308]    [c.34]    [c.70]    [c.432]    [c.418]    [c.239]    [c.1843]    [c.1864]    [c.95]    [c.379]    [c.113]    [c.220]    [c.668]   
Руководство по химическому анализу платиновых металлов и золота (1965) -- [ c.44 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.404 ]

Основы общей химии Том 3 (1970) -- [ c.195 ]




ПОИСК







© 2025 chem21.info Реклама на сайте