Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ промышленный научные исследования

    Предлагаемая книга представляет собой попытку сведения воедино основных проблем, лежащих в основе практического применения гетерогенно-каталитических реакций в химической промышленности. В связи с этим материал, рассматриваемый в книге, достаточно разнообразен и охватывает как вопросы научных основ подбора и производства катализатора, так и кинетику гетерогенно-каталитических реакций, расчеты контактных аппаратов, лабораторные методы исследования катализаторов и каталитических реакций. Все эти вопросы авторы старались рассматривать с точки зрения их практического использования на разных стадиях разработки промышленных каталитических процессов. На изложение материала не могли не отразиться личный опыт и личные научные интересы авторов, вследствие чего не все материалы и теоретические положения, затрагиваемые в книге, освещены с одинаковой полнотой. Естественно, что столь обширный материал, как основы технического катализа, не мог быть изложен без заметных упущений. Поэтому авторы будут весьма благодарны всем, кто поможет их устранить. [c.4]


    Основным научным центром предприятий химической промышленности являются главные илп центральные лаборатории ПО (предприятия). ЦЛ, выполняющие научные исследования, включают ряд лабораторий аналитическую, физическую, физико-химическую, физнко-механнческую катализа и катализаторов, антикоррозионных покрытий очистки отходящих газов, паров, сточных вод лаборатории синтезов пилотных и опытных установок, испытательных стендов и др. Помимо указанных лабораторий в состав ЦЛ вк.лючаются группа или лаборатория экономических исследований, отдел (группа) технического обслуживания. Для ускорения процесса исследований создаются комплексные бригады по отдельным темам. После завершения темы тематическая бригада расформировывается или, если это целесообразно, получает другую тему, исходя из характера темы и квалификации исполнителей. При необходимости темы разрабатываются с участием научных институтов, кафедр вузов. [c.50]

    В настоящее время, по определению А. А. Баландина, можно говорить о формировании интереснейшей и увлекательной науки — каталитической химии. Наука о катализе развивается на границе ряда смежных наук — физической и органической химии, химии комплексных соединений, химии и физики твердого тела. До 90% процессов современной химической промышленности и почти все биохимические процессы являются областями применения катализа. Дальнейшее развитие основных отраслей химической и нефтеперерабатывающей промышленности будет основываться на все более расширяющемся использовании и усовершенствовании каталитических методов, а состояние научных исследований в области катализа будет в значительной мере определять технический уровень важнейших отраслей промышленности. [c.4]

    Чем больше развивалась химическая промышленность, чем дальше продвигались научные исследования в области катализа, тем шире становился круг применяемых ускорителей. [c.7]

    Химически неоднородные поверхности. Действие промоторов. Присутствие на поверхности двух и более твёрдых соединений может в огромной степени усилить неоднородность поверхности. Действительно, добавление к катализатору второго твёрдого вещества, обычно называемого промотором, весьма часто повышает адсорбционную способность и в ещё большей степени активность катализатора. Добавление к каталитически активным твёрдым телам промоторов в виде огнеупорных материалов имеет большое значение в промышленности. Число этих промоторов огромно. Некоторые из них сами обладают известной каталитической активностью, но у большинства промоторов она отсутствует. Применение огнеупорных подкладок под металлическими катализаторами в целях экономии дорогостоящих катализаторов имеет, повидимому, не меньшую давность, чем техническое применение контактного катализа платина, применяемая при каталитическом окислении сернистого ангидрида, обычно помещается на асбесте. Уже в патентной литературе 1913 г. появляются указания на повышение самой каталитической активности данного количества твёрдого катализатора применением огнеупорной подкладки, помимо возможности распределения его на большей площади и предохранения от вредного влияния нагрева. Научные исследования промовирующего действия начали появляться в 1920 г., и в настоящее время научная литература содержит огромное количество данных по этому вопросу. Поскольку многими авторами он рассмотрен весьма подробно мы ограничимся упоминанием лишь нескольких наиболее характерных случаев и попыткой наметить некоторые из возможных механизмов промовирующего действия. [c.312]


    Область основных научных исследований — неорганический катализ. Изучал механизм каталитических процессов на металлах и смешанных окислах. Предложил новые методы получения катализаторов. Выполнил работы по интенсификации промышленных каталитических процессов. [c.429]

    Несмотря на то, что возможность переработки сероводорода на серную кислоту по методу мокрого катализа была впервые установлена в Советском Союзе [5] и несмотря на то, что в СССР были проведены широкие научные исследования по изучению этого процесса [6—10], промышленное освоение метода мокрого катализа в Советском Союзе было осуществлено только в 1954 г. [c.357]

    В этих работах важная роль отводилась изысканиям катализаторов процесса синтеза аммиака, особенно катализаторов промышленного значения. Исследованиям каталитических процессов посвящено очень много труда с привлечением разнообразных научных средств, однако из-за сложности задачи пока не удалось создать универсальной теории, охватывающей все явления катализа. Накопленный огромный экспериментальный материал, все время пополняемый новыми данными, образует прочную основу для теоретических обобщений. Такие обобщения результатов эмпирических наблюдений позволят осмыслить на- [c.493]

    Но влияние поверхности наблюдается не только в дисперсных системах, роль поверхности чрезвычайно важна в тех случаях, когда на ней осуществляется реакция (катализ твердым веществами, коррозия, поверхностные процессы на полупроводниках и т.д-). В химической промышленности контактный катализ вообще и катализ с участием твердого тела широко используются еще со времен разработанного Габером метода синтеза аммиака фиксацией атмосферного азота. В настоящее время твердые дисперсные катализаторы стали предметом интенсивного изучения в связи с поисками новых методов переработки каменного угля. Катализ применяется в уже существующих и обязательно предусматривается в еще разрабатываемых методах удаления ядовитых и вредных веществ, загрязняющих атмосферу (соединения серы, N0 , СО и т.д.). Многие вопросы, связанные с избирательностью каталитических реакций, также являются важной темой научных исследований. В целом роль каталитических процессов [c.10]

    Отсюда очевидна важность задачи, поставленной промышленностью перед научными учреждениями — создать базу для обновления всего имеющегося ассортимента катализаторов [2]. Поэтому поиски путей усовершенствования существующих катализаторов и создания новых являются основным направлением научных исследований в области катализа. [c.37]

    Направление научных исследований синтез органических соединений серы, фосфора, фтора, производных ацетилена, разных специальных продуктов, биологически активных веществ, биологически разлагаемых детергентов полимеризация и изучение свойств высокомолекулярных соединений (привитые сополимеры, термостойкие полимеры, ионообменные мембраны, адгезивы) разработка и внедрение новых методов синтеза на пилотных установках, методов анализа в области применения ядохимикатов улучшение техники контроля и техники безопасности исследования в области ферментов и ферментационных процессов изучение микроструктуры соединений с помощью рентгеновских лучей, электронной микроскопии, ядерного магнитного резонанса, УФ-, ИК-спектроскопии и спектров комбинационного рассеяния микроанализ физико-химические исследования полимеров (хроматография, техника адсорбции, кинетика реакций, катализ) изучение свойств твердых тел (например, углей, графитов), аэрозолей очистка воды и воздуха от промышленных загрязнений. [c.341]

    Направление научных исследований теоретическая химия физическая химия механизм электрохимических реакций гомогенный и гетерогенный катализ гидрирование олефинов на металлических катализаторах полимеризация олефинов с помощью щелочно-кислотных катализаторов кинетика разложения аммиака на промышленных катализаторах каталитический синтез углеводородов газофазная адсорбция на поверхности чистых металлов. [c.376]

    В книге изложены теоретические основы гетерогенного катализа, кинетика каталитических реакций, научные основы подбора катализаторов. Описаны промышленные гетерогенно-каталитические процессы, расчет и устройство каталитических реакторов, синтез катализаторов и методы исследования каталитических реакций. [c.2]

    Использование результатов фундаментальных исследований привело к возникновению промышленного катализа. Развитие катализа также опиралось на научные достижения. Для создания высокоактивных и селективных катализаторов на основе научной теории, а не методом проб и ошибок разрабатывались теории, объясняющие катализ с помощью концепции активных центров, геометрии, поверхности металлов, их свойств и т. д. В большинстве случаев добиться полного понимания не удалось, и катализ остается сочетанием искусства и науки. Фундаментальные исследования привели к многочисленным моделям, которые оспаривались, совершенствовались, а иногда и отбрасывались. Для получения дохода от катализатора не обязательно понимать, почему он работает, но это обычно способствует развитию теоретических представлений об активных центрах и об их взаимодействии с реагентами и продуктами. Некоторые [c.20]


    В результате совместных работ сотрудников Института катализа, Института математики и Вычислительного центра Сибирского отделения АН СССР успешно преодолены основные трудности, возникающие нри качественном и количественном исследовании моделей процессов, описываемых обыкновенными дифференциальными уравнениями и дифференциальными уравнениями в частных производных. На основе разработанных здесь качественных методов значительно продвинулось вперед понимание поведения систем в целом. Методы теории устойчивости позволили изучать стационарные и нестационарные режимы. Разработанные численные схемы и алгоритмы для решения дифференциальных уравнений в частных производных расширили круг математических моделей, используемых для научно обоснованного проектирования промышленных аппаратов. [c.3]

    Из разновидностей гетерогенного катализа наибольший интерес для наших целей представляют примеры применения твердого катализатора в жидкой среде и твердого катализатора в газовой или паровой фазе. Б гомогенном катализе участвует в реакции вся масса катализатора, и скорость реакции пропорциональна концентрации катализатора. В гетерогенном же катализе скорость реакции не находится в прямой пропорциональности массе катализатора, но зависит от величины его поверхности, его физических и химических свойств. Гетерогенный катализ представляет огромный интерес для химической промышленности вообще и для производства промежуточных продуктов в частности. Выше мы видели уже примеры этому, а в последующем будем иметь возможность разобрать еще некоторые. Тем не менее, несмотря на большое число исследований в этой области, она остается еще очень слабо теоретически освещенной, и достижения в ней завоевывались по преимуществу путем эмпирических проб и поисков, но не приложением научной теории. [c.467]

    Большое значение катализа в неорганической, физической и органической химии, в химической промышленности и в биохимии требует разработки теории катализа. Особенно важным вопросом в изучении катализа является разработка теории научного подбора катализаторов. Такая теория не может появиться готовой сразу ее предстоит построить, и это произойдет в результате исследований большого числа ученых. Все историческое развитие химии говорит о том, что задачу создания теории и подбора катализаторов уже следует ставить. Нет никакого сомнения, что она будет решена. Сознательными и планомерными усилиями мы можем приблизить ее решение. Оно очень важно для нашей страны. Умение предсказывать катализаторы будет означать переворот в материальной культуре. [c.5]

    Неполное окисление различных органических соединений на гетерогенных катализаторах используется в современной химической промышленности для синтеза ценных кислородсодержащих продуктов окиси этилена из этилена, акролеина и акриловой кислоты из пропилена, бутадиена из бутена, фталевого ангидрида из нафталина или о-ксилола, малеинового ангидрида из бензола или бутена, формальдегида из метанола, акрилонитрила из пропилена и аммиака и т. д. [15]. Помимо этого, на практике используется также глубокое окисление органических веществ при каталитической очистке воздуха и других газов. Исследование процессов рассматриваемого класса дает также ценный материал для решения фундаментальных проблем теории катализа научного предвидения каталитических свойств — активности и селективности, исследования характера промежуточного химического взаимодействия в ходе катализа и роли различных типов механизмов каталитических процессов. [c.187]

    В книге излагаются научные основы разработки и проектирования гетерогенно-каталитических процессов. Книга включает в себя разделы, посвященные теории катализа и вопросам подбора катализаторов, теоретической и прикладной кинетике гетерогенно-каталитических реакций, расчету и оптимальному проектированию реакторов, технологии производства катализаторов и лабораторным методам исследования каталитических процессов и катализаторов. Книга рассчитана на научных работников и инженеров химической и нефтеперерабатывающей промышленности, аспирантов и студентов старших курсов химических и химико-технологических ВУЗов. [c.2]

    Каталитические работы Зелинского послужили основой для создания многих новых технологических процессов в области химической переработки нефти и промышленности органической химии. Они дали ценные методы для глубокого изучения химии нефти. Вместе с тем они заложили фундамент дальнейших исследований, составивших много новых направлений в современных научных работах по катализу. [c.111]

    В первом разделе выпуска помещены работы обобщающего характера, посвященные проблеме научных основ подбора катализаторов, механизму определенных типов каталитических реакций и т. п. В этих статьях отражены основные направления развития науки о катализе на Украине. Второй раздел содержит оригинальные работы по кинетике и механизму отдельных каталитических процессов, в том числе промышленных. В третьем разделе представлены исследования катализаторов, их адсорбционных свойств, поведения в процессе катализа. [c.3]

    Процесс конструирования и оптимизации оболочек ЭС в гетерогенном катализе наглядно проявляется в том, что совершенствуются автоматизированные системы научных исследований (АСНИ), автоматизированные системы подготовки модулей промышленных аппаратов (АСПМ), системы машинной обработки кинетической информации (СМОКИ), системы автоматизированного проектирования (САПР), автоматизированные системы управления технологическими процессами (АСУТП), гибкие автоматизированные системы экспериментальных и производственных комплексов (ГАПС) и т. п. По существу, каждая из названных автоматизированных систем представляет собой отдельную составляющую в глобальной многофункциональной системе искусственного интеллекта в области решения проблем гетерогенного катализа. [c.8]

    Интеллектуальный диалог ЛПР—ЭВМ представляет наиболее эффективную форму организации ППР в различных режимах в режимах сбора и переработки экспериментальной информации, в режимах синтеза оптимальных функциональных операторов объ-ектов) в режимах автоматизированного решения проектных задач, в режимах поиска оптимальных законов гибкого управления и др. Из перечисленных режимов ППР, реализуемых в форме диалога ЛПР—ЭВМ, для успешного решения задач в области теории и практики гетерогенного катализа особое значение приобретают автоматизированные методы получения достоверной информации о процессе, глубины ее обработки и осмысления. Здесь на первый план выступают вопросы оптимальной организации эксперимента, обеспечения его гибкости и информативности, создания специализированных систем научных исследований (АСНИ). Специализация методов экспериментального исследования может осуществляться по различным направлениям изучение только или преимущественно самих катализаторов изучение только или преимущественно каталитических процессов, изучение отдельных свойств, не имеющих простой и однозначной связи с катализом, и изучение свойств, непосредственно характеризующих катализ прямые методы изучения каталитического процесса — его выходов, селективности и кинетики в сочетании с его экономической эффективностью, целесообразностью его промышленной реализации и т. п. [c.38]

    Книга рассчитана на инженерно-технических п научных работников химической, нефтеперерабатывающей, газовой и других отраслей промышленности, занимающихся исследованием, проектированием п промышленным применением технологпческнх процессов в кипящем слое катализатора. Она может служить посо-бпем для студентов, изучающих катализ в кипящем слое. [c.2]

    В 1930-х годах появились первые научные исследования по кинетике реакций, протекающих в проточных системах. Начало этим исследованиям было положено химиками — специалистами в области катализа А. А. Баландиным, Г. К. Боресковым, М. Г. Слинь-ко и М. И. Темкиным (СССР), А. Ф. Бентоном (США), Э. Винтером (Германия). В 1932 г. Г. К. Боресков впервые в качестве одной из основных задач конструирования и расчета трубчатых контактных аппаратов для сернокислотной промышленности назвал обеспечение максимальной скорости процесса и максимального использования контактного объема . Отмечая отставание теории и недостаточное знание закономерностей протекания даже таких важных каталитических процессов, как окисление сернистого газа, он предложил метод проведения этой реакции в условиях не одной оптимальной температуры для всего процесса, а оптимальной кривой изменения температур, характерной для каждого процесса и катализатора . Эти пионерские исследования были продолжены в 1936—1937 гг. с целью установления оптимальных условий контактного процесса — температурного режима и состава исходной газовой смеси. Работы эти следует считать своеобразной экстраполяцией химической кинетики на ту область, которая до 1940-х годов была объектом химической технологии, как науки сугубо прикладной, лишенной права на фундаментальные исследования. [c.152]

    В качестве катализаторов использовали окислы и соли никеля, кобальта, железа и других металлов, шроио применяемых для катализа, на которых неоднократно отвечалось интенсивное образование углеродных отложений в интервале температур 300...500 цри их применении в нефтехимической н нефтвпвреробагывающей промышленности. Поэтому исследования закономерностей образования на их поверхности углеродных отложений имеет не только научный, но и П1>актический интерес. [c.29]

    Большая заслуга в развитии научных исследований в-области алюмосиликатного катализа принадлежит А. В. Фросту, который еще в 1940 году, т. е. в самом начале промышленного использования алюмосиликатов, в большой обзорной статье охарактеризовал возможности этого катализатора [50]. В 1942 году [51] он показал, что олефины, образующиеся при превращении октанола-1 и гексанола-1 над. активированной глиной, частично гидрируются за счет бедных водородом высокомолекулярных продуктов. [c.120]

    Основные научные исследования относятся к нефтехимии и каталитической химии. Впервые систематизировал опытные данные, полученные русскими и зарубежными учеными по химии и физикохимии нефти. Изучая адсорбцию, высказал (1911—1912) гипотезу о существовании физико-химической силы притяжения, являющейся промежуточной между химической связью и молекулярным притяжением. На основании этой гипотезы объяснил образование коллоидных растворов и суспензий флоридина (отбеливающей земли) и металлов в жидкостях, а также процессы адсорбции и десорбции. Результаты этих исследований легли в основу разработки методов промышленной очистки нефтепродуктов и были использованы им в работах по гетерогенному катализу (1916). Объяснил (1908) физическую сущность процесса перегонки нефти с водяным паром. Доказал (1911— 1912), что полимеризация олефинов идет на природном алюмосиликате. Его исследования поверхностного натяжения на границе нефтепрод5т<т — водный раствор способствовали формированию представлений об образовании и разрущении водно-нефтяных эмульсий. Автор труда Научные основы переработки нефти (1913, 3-е изд. 1940). [22, 23, 123[ [c.159]

    В Советском Союзе были проведены широкие научные исследования процесса производства серной кислоты методом мокрого катализа, однако освоение этого метода в промышленном масшта- [c.117]

    Автора этой публикации связывала крепкая многолетняя дружба с Робертом Аветисовичем Карахановым. Нас сблизила тематика научных исследований - химия и технология 1,3-диок-сациклоалканов и их гетероаналогов. Возглавляемая им группа в Институте органической химии им. Н. Д. Зелинского уделяла основное внимание термокаталитическим процессам превращения вышеупомянутого класса органических соединений. На кафедрах и в 4-х крупных лабораториях, созданных Минхимпромом СССР в Уфимском нефтяном институте, мы занимались проблемами синтеза, особенно промышленного, и исследовали жидкофазные реакции этих соединений в условиях кислотного катализа и радикально-цепных преврап ений. У нас быстро возникли [c.25]

    Большой вклад в развитие научных основ приготовления цеолитных катализаторов и выяснение механизма кислотночюновного катализа на цеолитах внесли исследования советских ученых [13, 20, 21]. В зтих исследованиях были выявлены основные закономерности, связанные с формированием активных катализаторов на основе цеолитов типа фожазита, мордени-та, ЦВМ, ЦВК и др., а также механизм их действия в реакциях алкилирования бензола и изопарафинов олефинами, скелетной изомеризации насыщенных углеводородов, гидратации олефинов и т.д. Успехи, связанные с изучением кислотиочкновного катализа на цеолитах как у нас в стране, так и за рубежом, привели к промышленному освоению цеолитных катализаторов нефтепереработки, а именно в процессах крекинга, гидрокрекинга, изомеризации углеводородов и др. [c.6]

    И если сегодня, в 70 годовщину со дня рождения идеи топливного элемента, электрическая энергия производится все же преимущественно принципиально менее выгодным необратимым путем, то к этому следует отнестись критически, если мы хотим добиться прогресса в будущем. Оглядываясь назад, мы можем сказать, что Оствальд и Нернст слишком далеко опередили свое время. Они не имели еще пи теоретических, ни экспериментальных, ни технологических средств для решения этой большой задачи. Им недоставало детальных знаний по катализу, которые мы, получили благодаря развитию современной химической промышленности. Не было в их распоряжении и современных материалов, как металлов, так и пластмасс, а гакже очень мало было известно о методах спекания. Лишь современная электроника дала нам методы измерений для точных исследований элементарных процессов на электродах. Наконец, мы нр можем сегодня даже представить себе, как можно глубоко понять энергетическую проблему без знания квантовой теории, разработка которой была начата Планком на два десятилетия позже. Препятствием было к то, что у исследователей в то время господствовал индивидуальный метод работы. Несмотря на свою гениальность, они не могли справиться с задачей, стоящей на стыке нескольких областей знаний, для этого необходима организованная совместная работа ученых разных специальностей. Например, в нашей группе работали, кроме электрохимиков и физиков, также специалисты в области математики, пластмасс, электроники, химической технологии и электротехники. Наконец, несколько десятилетий назад наука считалась более или менее личным делом или прихотью и в связи с этим мало финансировалась. Лишь недавно в передовых индустриальных странах стали считать такие научные те.мы важнейши.ми национальными задачами и хорошо финансировать их. Кроме того, методы прямого превращения энергии получили в последние годы неожиданно сильный толчок в связи с тем, что такие источники необходимы для космических полетов. [c.8]

    Поедлагаемая вниманию советского читателя монография Беркман, Моррелл и Эглофф Катализ в неорганической и органической химии содержит обзор научной и патентной литературы по катализу до 1939 г. Не все части книги имеют одинаковую ценность. Наиболее интересны и, несомненно, будут полезны главы, посвящ,енные разделам катализа, по которым прежде не было обзорной литературы (например, гл. IV, VI, VII), а также справочный табличный материал гл. XI. Вследствие быстрого развития нефтеперерабатывающей промышленности гл. X сейчас уже не полна, в ней отсутствует, например, описание новых процессов каталитического крекинга, фтористоводородное алкилирование и др. Громадный материал, собранный авторами, к сожалению, не подвергнут ими необходимой критической оценке и не везде вьщелено главное. Очень большое место отведено описанию американских работ, что не соответствует их значению. Неполно освещены работы ученых нашей страны между тем наиболее крупный вклад в развитие катализа внесли именно они. С полным правом можно утверждать, что катализ родился в России и развился в самостоятельную, большую научную дисциплину в СССР. Для иллюстрации этого кратко охарактеризуем выдающуюся роль исследований наших ученых в развитии катализа. [c.3]

    В начале прошлого века (еще почти за четверть века до введения термина катализ ) в России были выполнены очень важные в научном и практическом отношении исследования по каталитическому превращению крахмала в декстрин и глюкозу в присутствии минеральных кислот и энзимов (Г. С. К. Кирхгоф, Петербург, 1811—1814 гг.). Только после опубликования этих работ в Западной Европе появилось большое число аналогичных исследований (Фогель, Де-Соссюр, Браконно, Лампадиус, Тромсдорф, Деберейнер и др.), продолжавшихся почти 20 лет. Русским ученым А. И. Ходневым в 1852 г. была предложена первая общая теория, объясняющая катализ образованием парных соединений . После открытия Н. Н. Зининым реакции превращения ароматических нитросоединений в амины А. М. Зайцев в 1871 г. первым применил каталитическую гидрогенизацию для восстановления нитробензола в анилин в присутствии палладия. В промышленности уксусную кислоту готовят главным образом окислением ацетальдегида, который получают каталитической гидратацией [c.3]

    История современной каталитической гидрогенизации начинается лишь с работ Сабатье, Ипатьева и Зелинского. Сабатье в 1897 г. положил начало парофазной гидрогенизации ненасыщенных соединений над никелем с тех пор и до настоящего времени исследования каталитических явлений, происходящих на никеле, представляют собою одно из самых боевых направлений научной работы в области катализа. Ипатьев в 1902—1904 гг. ввел в технику гидрогенизации высокие давления, эффективность применения которых стала очевидной. Теперь на применении высоких давлений основано подавляющее большинство промышленных процессов гидрогенизации, но исследования в направлении совершенствования каталитической гидрогенизации под высоким давлением не прекращаются и поныне. [c.115]

    В Советском Союзе — стране с передовой нефтехимической и нефтеперерабатывающей промышленностью интенсивно проводятся работы по изучению цеолитов. Координирует эти исследования Совет по синтезу, изучению и применению адсорбентов, возглавляемый академиком М. М. Дубининым. На регулярно организуемых совещаниях Совета по адсррбентам большое. место отводится работам по цеолитам. Значительное число докладов, посвященных цеолитным катализаторам, обсуждается на всесоюзных конференциях по катализу и на более специализированных научных встречах, например на совещаниях по каталитическим превращениям углеводородов ИТ. д. [c.5]

    Описанная методика исследования катализа представляет значительный научный и практический интерес. Химические производства должны иметь в цехах или ЦЗЛ модели промышленных трубчатых реакторов в натуральную величину (одну трубку) с устройствами для прямого контроля концентраций и температур вдоль слоя, так как это позволяет подбирать оптимальные режимы концентраций, потоков, температуры, сравнивать работу различных катализаторов и получать эмпирические кинетические уравнения. Все эти данные могут быаь непосредственно перенесены на работу промышленных реакторов. [c.199]


Библиография для Катализ промышленный научные исследования: [c.201]   
Смотреть страницы где упоминается термин Катализ промышленный научные исследования: [c.362]    [c.116]    [c.279]    [c.102]    [c.21]    [c.14]    [c.15]    [c.205]   
Катализ в промышленности Том 1 (1986) -- [ c.9 ]




ПОИСК





Смотрите так же термины и статьи:

Катализ в промышленности

Научные исследования

Научные исследования в промышленности



© 2025 chem21.info Реклама на сайте