Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитического крекинга метод исследования

    Чувствительность керосиновых и дизельных топлив к ингибиторам ниже, чем у бензинов, поэтому многие антиокислители бензинов являются малоэффективными для более тяжелых топлив это связано с различиями в углеводородном составе топлив. При исследовании групп углеводородов, выделенных хроматографическим методом из дизельного топлива каталитического крекинга, установлено, что бициклические ароматические углеводороды подвержены значительному окислению, но не поддаются ингибированию в отличие от непредельных алифатических углеводородов, которые хотя и окисляются в большей степени, но могут быть полностью стабилизированы обычными антиокислителями. Содержащиеся в топливе гетероциклические соединения также не поддаются ингибированию и при окислении образуют нерастворимые смолы. [c.253]


    Определение 04 моторным методом — наиболее сложный способ испытания бензиновых смесей Основная причина — нелинейная связь между свойствами анализируемых объектов и получаемыми результатами, что вызывает значительные расхождения Оценка применимости спектроскопии ЯМР для поиска взаимосвязей вида фрагментный состав — свойство проведена нами для бензинов и легких фракций нефти В табл 3 5 приведен фрагментный состав ряда товарных бензинов прямогонных (42—48), термокрекинга (49, 50), смеси прямогонных и термокрекинга (51—55), смеси каталитического крекинга и риформинга (55—60) Октановое число исследуемых бензинов было известно и варьировалось в пределах -20 ед (63—80) В табл 3 6 приведены диапазоны изменения ФС исследованных бензинов Прямогонные бензины имеют низкие значения параметра ароматичности и довольно высокое содержание углеродных атомов Сд, характеризующих содержание н-алканов В состав бензинов термического крекинга входит заметное количество алкенов, детонационная стойкость которых выще детонационной стойкости мзо-алканов и н-алканов Бензины каталитического крекинга и риформинга имеют наиболее высокие детонационную стойкость и значения 04, что связано с увеличением содержания в них ароматических углеводородов и мзо-алканов (см табл 3 6 — / и С ) [c.250]

    Комбинированный метод анализа очень удобен для исследования технических газов переработки нефти, которые получаются в результате процессов термического и каталитического крекингов, гидроформинга и т. д. [c.849]

    Имеются и другие исследования, а также результаты промышленных испытаний процесса подготовки сырья каталитического крекинга методом гидроочистки [8]. Изучались дистилляты самых различных по происхождению нефтей. При этом все выводы иссле- [c.192]

    Результаты исследования продуктов каталитического крекинга методом средних нергий [312] [c.191]

    Кроме этих работ, имеется очень много данных исследований и промышленных испытаний процесса подготовки сырья каталитического крекинга методом гидроочистки [280—287]. [c.75]

    Исследования проводились таким образом, что дистиллят подвергался каталитическому крекингу путем контактирования с катализатором в определенных условиях температуры и времени, затем полученный катализат очищали серной кислотой и обычной отбеливающей глиной контактным методом. При контактной очистке отгонялись легкие фракции катализата. Некоторые ката-лизаты для сравнения очищались фурфуролом с последующей обработкой 2% кислоты и 5% отбеливающей земли. [c.251]


    Для анализа газов нефтепереработки, представляющих собой сложную смесь углеводородов 02-0 и некоторых неуглеводородных компонентов, применяется [2] метод газовой хроматограф в газожидкостном варианте с использованием полярных и неполярных жидких фаз и в адсорбционном варианте с применением природных синтетических и модифицированных адсорбентов [З]. Для исследования пента-амиленовой фракции бензина каталитического крекинга, а также жирного газа этого же бензина термокаталитического разложения в качестве наполнителя колонки применяли фракцию волокнистого углерода, полученного по методике [4] зернением 0,25-0,5 ш, обработанную хинолином в различных процентных соотношениях. Лучшее разделение было получено при загрузке колонки адсорбентом, содержащим 15-20 хинолина. [c.158]

    Если не считать термических методов, переработка нефтей и нефтяных фракций с применением водорода для получения ценных товарных продуктов возникла и начала использоваться в промышленности раньше, чем другие промышленные процессы превращения, в том числе каталитический крекинг, алкилирование и каталитический риформинг. На протяжении многих лет. гидрирование углеводородов является предметом интенсивных исследований. Эти исследования продолжаются и в настоящее время и охватывают широкую область, что и объясняет многочисленность публикаций, посвященных этой теме, включая патенты. [c.116]

    В данном докладе делается обзор наиболее общих методов конверсии остаточного топлива, исследованных и реализованных за последние десять лет. Исследуется влияние этих методов на производительность нефтеочистительных заводов, а также рассматривается вопрос о том, почему обработка остатков в установках (F ) завоевала такую популярность. На многих нефтеочистительных предприятиях в настоящее время используются частичные операции с остатками, в которых некоторая часть вакуумного остатка добавляется к подаваемому материалу в установке жидкого каталитического крекинга (F ). [c.423]

    Результаты любого процесса нефтепереработки в значительной степени зависят от качества перерабатываемого сырья особенно это относится к каталитическим методам переработки и, в частности, к процессу каталитического крекинга. Исследованиями последних лет установлено, что в нефтяных дистиллятах, применяемых в качестве сырья каталитического крекинга, содержатся компоненты, которые в значительной степени ухудшают работоспособность катализатора. Материальный баланс изменяется в сторону уменьшения выхода целевых продуктов и ухудшения их качества. [c.15]

    Однако до сих пор нет метода выделения спекшихся шариков от остальной массы катализатора, циркулируюш его в системе установок каталитического крекинга. Учитывая большое значение этого вопроса, мы провели исследования по подбору методов выделения спекшихся неактивных шариков и предложили применять для этого кипяш,ий слой катализатора в плотной фазе. В связи с тем, что спекшиеся шарики имеют более высокий насыпной вес (1,2—1,3 против 0,80—0,85 обычных шариков), они накапливаются в нижней части кипящего слоя. Чтобы выделение было четким, необходимо на разделение подавать катализатор узкого фракционного состава. Поэтому прежде всего катализатор должен пройти стадию рассева на узкие фракции. Было установлено, что удовлетворительного разделения в аппаратах достигают при применении фракций, имеющих отклонение размеров в 1 мм. В этом случае хорошо отделяются неактивные шарики. Опыты показали также возможность разделения и более широкой фракции. Например, был разделен катализатор, содержащий в своем составе следующие фракции (в мм) меньше 2,0 (крошка), 2,0—2,5, 2,0—3,0 и 3,0—4,0. В этом случае черные шарики достаточно резко выделились в нижней части аппарата, но некоторое количество наиболее крупных шариков свежего катализатора оказалось в нижнем слое. Хотя содержание свежих шариков в нижнем слое незначительно, но, учитывая высокую стоимость катализатора, необходимо ориентироваться на предельно четкое разделение, что достигается при применении узких фракций. [c.172]

    Изопентены — 2-метилбутен-1, 2-метилбутеп-2, З-метилбутен-1 — являются важнейшим сырьем для получения изопрена. Многочисленные исследования [53] показали, что метод дегидрогенизации изопентенов до изопрена (725) является наиболее дешевым и перспективным. Одно из преимуществ этого метода — наличие большого запаса дешевого сырья, в отличие от других методов, которые в качестве сырья применяют ацетон и ацетилен или изобутилен и формальдегид. Метод дегидрогенизации основан на применении в качестве сырья изопентана, выделенного из газового бензина и изопентанов, полученных в процессах термокаталитической переработки средних и тяжелых парафиновых углеводородов (термический или каталитический крекинг), или в процессе каталитической дегидрогенизации фракции С5, выделенной из газового бензина. [c.496]

    В книге освещены вопросы методик исследования нефтепродуктов, нефтехимического синтеза, схем современных нефтеперерабатывающих заводов, каталитического крекинга, газификации тяжелых нефтяных остатков, применения адсорбционного метода МНИ, использования высоковязких крекинг-остатков в качестве топлива и др. [c.2]


    По ряду причин, а именно из-зз различий в методике эксперимента, неоднозначности получаемых результатов, а также из-за значительной противоречивости данных по отравлению цеолитов в высокотемпературных условиях, этот в принципе очень эффективный метод пока трудно использовать при изучении механизма каталитических превращений. Однако исследования адсорбции оснований представляют определенный практический интерес, так как они позволяют лучше понять отравление промышленных катализаторов крекинга азотсодержащими соединениями [229]. [c.66]

    Каталитический крекинг парафинов недавно был заново исследован рядом авторов [1—5], вооруженных современными аналитическими и вычислительными методами, теоретическими представлениями. При этом учитывались термические реакции и деактивация катализатора. [c.76]

    При эксплуатации установок каталитического крекинга происходят существенные изменения качества алюмосиликатного катализатора вследствие воздействия высокой температуры, водяного пара и отравления катализатора вредными соединениями, содержащимися в сырье крекинга. Особенно это наблюдается три переработке тяжелых видов сырья. Так как изменения качества катализатора резко ухудшают показатели процесса, были проведены большие исследования по защите катализатора от старения и отравления. Было установлено, например, что для предотвращения вредного воздействия металлов можно применять два метода первый метод-очистка сырья крекинга с целью удаления металлов и других нежелательных компонентов и второй — удаление накопившихся металлов с поверхности катализатора. [c.87]

    Предварительное исследование по применению метода газо-жидкостной хроматографии для анализа сложных органических смесей, таких как жирные газы каталитического крекинга, прямогонные бензины и бензины вторичного происхождения, показали, что этот метод может успешно применяться для определения их индивидуального состава. [c.172]

    В Советском Союзе благодаря своеобразным условиям, сложившимся в период строительства первых установок каталитического крекинга, природные катализаторы не получили промышленного распространения. В настоящее время закончена разработка первых отечественных природных микросферических катализаторов крекинга. В результате широких исследований выбрана сырьевая база, отработаны методы активации глины и техно- [c.455]

    Показатель степени р может изменяться в зависимости от-гидродинамических условий в зоне реакции [51], В то же время исследованиями каталитического крекинга показано- 41, что с применением методов математической статистики глубина превращения и выход продуктов в зависимости от оперативных условий (температуры и объемной скорости подачи сырья) удовлетворительно описываются полиномом второй степени [c.33]

    Использование программы сбора и обработки данных в целях исследования операций лучше всего можно иллюстрировать, снова вернувшись к гипотетической установке каталитического крекинга. Примем, что разработана система хранения данных, имеются программы вычисления суточных тепловых и материальных балансов и методом анализа множественных регрессий на основании эксплуатационных данных выведены уравнения для вычисления выходов. [c.29]

    До развития промышленного каталитического крекинга были проведены обширные исследования по методам производства п подбору активных, стойких и легко регенерируемых катализаторов, а также решены многочисленные вопросы технологического и конструктивного характера по созданию надежных, эффективных и достаточно гибких в работе аппаратов и устройств для крекинга еырья, бесперебойного перемещения больших масс горячего катали- [c.13]

    В заключение можно сказать, что ионный механизм каталитического крекинга обоснован непосредственно большой работой Уитмора по изучению реакций олефинов с участием иона карбония. Многие дополнительные исследования для доказательства ионного механизма были проделаны английскими химиками, детально изучившими ионные механизмы многих органических реакций. Можно упомянуть работу Шмерлинга и Бартлетта по алкилированию олефинов изопарафинами, недавно опубликованную работу Броуна по алкилированию методом Фриделя-Крафтса ароматических углеводородов алкил- и арилгалоидами и цитированную уже работу Бика и сотрудников. Физические данные были получены посредством спектроскопического изучения растворов углеводородов в кислотах, которые, как считается, генерируют ионы карбония, и посредством определения потенциалов, появления углеводородных ионов, особенно алкил-ионов в масс-спектрометре. Отсюда можно было перейти к термодинамическим данным, что дает возможность предсказывать некоторые важные свойства ионов карбония. [c.138]

    Коксовые отложения имеют сложную природу, которая может меняться в зависимости от условий. В некоторых случаях, особенно при относительно низких температурах, эти отложения представляют собой неопределенного состава полимеры с высокой молекулярной массой. В процессе каталитического крекинга образуются отложения [3.15] в виде крупных агрегатов многоядерных ароматических молекул с включениями сконденсированных систем ароматических колец, содержащих прочно адсорбированные продукты реакции. Проведенные методом ретгеноструктурного анализа исследования отложений кокса, образовавшихся при 400-500°С, показали, что значительная их часть находится в графитоподобном состоянии. Тем не менее, даже такой кокс может содержать значительное количество водорода [3.16]. [c.63]

    Таким образом, расчетные исследования, проведенные с применением модельных подходов механики многофазных сред, лабораторные и промышленные испытания показали возможность и перспективность предотвращения образования фенола в процессе каталитического крекинга путем ввода восстанавливающего агента (углеводородов) в регенерированный катализатор до его контактах сырьем. Данный метод является альтернативным предложенному выше способу введения в сырье каталитического крекинга добавок, ингибирующих окисление, и позволяет полностью предотвратить протекание окислительной конверсии- в процессе каталитического крекинга. В результате происходит не только предотвращение образования фенола и других продуктов окисления, ио и повышение количества и качества целевых продуктов процесса за счет увсличспия доли целевой катали гической конверсии. [c.124]

    Коррозионные свойства керосино-газойлевых фракций процессов каталитического крекинга и замедленного коксования в сравнении с гидроочищенным и негидроочищенным дизельным топливом прямой перегонки исследовались по ГОСТ 18597-73 (в условиях конденсации воды и по ГОСТ 20449-95(высокотемпературный метод). Из анализа результатов исследований, полученных по первому методу (рис.2.9), видно, что в присутствии воды коррозионная активность дистиллятов, расположенных по мере уменьшения содержания общей серы, немонотонно возрастает причем наименьшая величина коррозии 0,23 г/м- (в условиях конденсации воды) характерна для легкого газойля замедленного коксования (при массовом содержании серы 2,32%), наибольшая 3,25 г/м для гидроочищенного дизельного топлив с содержанием серы 0,5%, при этом легкий газойль каталитического крекинга (содержание сер" 1,1%) по коррозионной активности занимает промежуточное по.м ие (1,68 г/м ). [c.82]

    Вследствие высокого содержания полициклических ароматических углеводородов гидроочистка циркулирующих газойлей каталитического крекинга имеет большое значение, так как пoзвoляet получать хорошие результаты по выходу бензина и кокса при ПС-следующем крекинге этих газойлей. Поэтому исследованиям, посвященным гидроочистке циркулирующих газойлей с целью улучшения показателей процесса каталитического крекинга, посвящено много работ. Этот метод широко применяется в промышленности для увеличения глубины превращения сырья крекинга [298]. [c.193]

    В связи с существенным улучшением показателей каталитического крекинга при удалении металлов с поверхности алюмосиликатного катализатора ряд методов реактивации был исследован весьма подробно. В Советском Союзе разработан процесс сухой деметаллизации катализатора. Два метода реактивации катализаторов нашли применение в США в промышленном масштабе. Фирма Атлантик Рифайнер (США) разработала метод очистки катализатора крекинга, обеспечивающий достаточно полное удаление вредных металлических примесей. Этот процесс носит название Мет-х. Он внедрен на нефтеперерабатывающем заводе в Филадельфии в октябре 1961 г. Другой процесс очистки катализатора — Демет — разработан фирмой Синклер Рифайнер и внедрен на заводе в Вудривере (штат Иллинойс) в декабре 1961 г. [c.225]

    Детальное раздельное исследование зависимости физических и химических свойств высокомолекулярных компонентов нефти (углеводородов, смол и асфальтенов) от их элементного состава и химического строения позволит, несомненно, решить, наконец, такую важную для здравоохранения и до сих нор не решенную проблему, как установление ответственных за канцерогенную активность нефтей и нефтепродуктов структурных звеньев и атомных группировок в молекулах компонентов нефти. По литературным данным, канцерогенность нефтепродуктов связывается с по-ликонденсированными ароматическими структурами углеводородов и их производных. С этой точки зрения тяжелые нефтяные остатки, в которых все основные компоненты характеризуются именно такой структурой, представляются особенно интересным объектом для исследования. Твердо установлено, что остатки переработки нефти методами пиролиза и каталитического крекинга — остатки с наиболее богатым содержанием конденсированных ароматических углеводородов, характеризуются особенно высокой канцерогенностью. Экспериментально доказано, что канцерогенность этих нефтяных остатков резко снижается или исчезает совсем, если подвергнуть их гидрированию или окислению в присутствии небольших концентраций озона. Снижение канцерогенности в гидрированных нефтепродуктах — это дополнительный довод в пользу применения гидрогенизационных методов переработки тяжелых остатков [31—35]. [c.263]

    Важным условием успешного применения катализаторов является лабораторное исследование каталитического процесса, позволяющее проверить, сохраняется ли в промьшхленных условиях каталитическая активность на постоянном уровне, возрастает она или падает. Эти испытания позволяют также предварительно оценивать качество поставляемых катализаторов. Рекомендовать то или иное вещество в качестве катализатора промьш1ленного процесса возможно только после серии подобных исследований, включающих изучение термостабильности и устойчивости по отношению к действию водяного пара. Экспериментальные методы оценки характеристик катализаторов предусматривают испытание катализатора в лабораторных установках каталитического крекинга со строго контролируемым режимом работы, что позволяет надежно определить та- [c.52]

    Развитие низковольтовой аналитической масс-спектрометрии привело к созданию комплексного метода, в котором анализ исследуемого продукта осуществляется при обычных (50—70 эв) и пониженных (7—10 эв) значениях энергии ионизирующих электронов. При этом удалось использовать преимущества обоих методов и исключить их недостатки. В табл. 32 приведены результаты исследования бензина каталитического крекинга высокосернистого сырья [308]. Затрата времени на масс-спектрометриЧеский метод составляет [c.189]

    Широкое применение коллоидно-химических представлений для описания нефтяных дисперсных систем привело к изменению в последнее десятилетие принципиальных подходов к разработке новых и совершенствованию существующих технологий. К ним можно отнести разработку новых видов профилактических средств, таких как Универсин, Северин, судовых топлив, полиграфических красок, ингибиторов пара-финоотложения для углеводородных конденсатов, а также интенсивные технологии первичной переработки нефти, термического и каталитического крекинга, производства битумов и т.п. (2-5). Следует отметить, что многие исследования находятся до настоящего времени в стадии разработки, однако уже сейчас видно, что нетрадиционные методы физико-химической механики НДС позволяют достаточно эффективно воздействовать на технологические процессы с целью их интенсификации. [c.6]

    Во второй главе приведено обоснование выбора объектов и методов исследования. В качестве сырья использованы вторичные и прямогонные дистиллятные продукты - легкий газойль каталитического крекинга (ЛГКК) и прямогонный вакуумный газойль (ПВГ). [c.6]

    Такой подход не противопоставляется и не препятствует применению известной линейной модели оптимизации производственной программы НПЗ. Рассчитанные с ее помощью оптимальные суточные производительности трех ведущих установок следует рассматривать как ограничения, в рамках которых реализуются дополнительные возможности максимизации объема чистой прибыли специфическими средствами линейной оптимизации производственной программы При этом предварительное определение нелинейными методами суточ ных производительностей АВТ, каталитического крекинга и рифор минга почти не уменьшает реальное число степеней свободы линейнот модели. Вычислительная техника дифференциального исчисления обес печивает исследование на максимум чистой прибыли всего бесконечно го множества всевозможных сочетаний производительности указанных установок. Решение нелинейной модели оказывается чрезвычайно устойчивым. В то же время линейная оптимизация опирается всего на два-пять вариантов режима работы, которые лишь случайно могут выявить оптимальное сочетание производительности установок в пределах этого важнейшего комплекса. [c.518]

    Таким офазом, полученные результаты показывают, что, используя кинетический метод исследования, можно обнаружить образование ка-талитичесии-активного поверхностного соединения и устано1вить его влияние на увеличение скорости реакции таких неоднотипных каталитических реакций, как дегидратация спирта и крекинг кумола. [c.240]

    Болтон и Буяльский [210] подробно исследовали крекинг гексана на катализаторе, приготовленном дезаммонированием цеолита NH4Y. Особенность метода исследования в этой работе заключалась в том, что образец цеолита через небольшие промежутки времени протекания реакции вакуумировали и после удаления газообразных продуктов и реагентов проводили съемку спектров. В результате были получены интересные данные, хотя такой метод и не позволил составить представление о поведении катализатора в реальных условиях каталитической реакции, ИК-спектроскопические измерения выполняли следующим образом. Образец цеолита прогревали при 550° С вначале на воздухе, а затем в токе азота, далее цеолит охлаждали до комнатной температуры и снимали его спектр. После этого образец вновь нагревали до 450° Сив течение определенного промежутка времени через кювету пропускали пары гексана в токе азота. Образец охлаждали до 200° С и путем вакуумирования удаляли избыток углеводородов, затем температуру образца вновь снижали до комнатной и проводили повторную съемку спектров. Вслед за этим ячейку опять нагревали до 450° С и всю операцию повторяли еще раз, но уже при другой длительности реакции и т. д. Типичные спектры, полученные при различной длительности реакции (от 1 до 14,5 ч), представлены на рис. 3-92, а на рис. 3-93 показано, как меняется во времени оптическая плотность полос поглощения гидроксильных групп. Здесь же показана зависимость состава газообразных продуктов от длительности реакции. [c.331]

    Kaтaлитn J киe реакции водорода II. Каталитическое окисление 1П. Каталитический крекинг углеводородов IV. Прочие каталитические реакции Изотопный обмен VI. Изучение катализаторов изотопными методами VII. Изотопные эффекты 1И. Физические и физико-химические методы исследования IX. Синтезы меченых веществ. [c.3]

    Прокаленный алюмосиликатный катализатор содержит небольшое количество структурно связанной воды (около 1%), которая представлена в основном каталитически неактивными гидроксильными группами (например, пограничными SiOH-группами). Небольшая часть всей связанной воды имеет существенное значение для активности катализатора, так как, вероятно, она служит источником протонов для кислотных центров поверхности алюмосиликата. Эти кислотные центры не активируются при воздействии на них неорганических и органических оснований. Дегидратированные кислотные центры часто называются льюисовскими кислотами. Их можно считать также ангидридами кислот. Дегидратированный катион алюминия, ирисое диненный к кислотному центру, также можно отнести к льюисовским кислотам. При дальнейшем глубоком удалении воды протоны так же, как и вода, удаляются при одновременном отделении гидроксильных групп от силикагеля или от анионной части кислотного центра-Это может привести к постепенному разрушению поверхности и к падению активности. Весьма желательным является дальнейшее выяснение химической природы дегидратации и прокаливания катализатора. К сожалению, эти вещества аморфны и поэтому недоступны изучению их диффракционпыми методами. После обычного прокаливания на поверхности катализатора появляется два вида центров, причем одни из них заняты протонами, а другие, дегидратированные, не имеют протонов. Это показывают результаты исследования поверхности прокаленного и обработанного аммиаком при 175° С катализатора при помощи инфракрасных спектров поглощения. Оказалось, что на поверхности одновременно присутствуют ионы NH и адсорбированный аммиак. Однако предполагается, что каталитический крекинг должен вызываться главным образом кислотными центрами, насыщенными протонами. Участие в общей реакции ангидридных центров еще не ясно. [c.99]

    Проведенными исследованиями в бывш. АзНИИ НП и ВНИИ НП было показано, что на алюмосиликатном катализаторе эффективно превращаются смолистые соединения тяжелых дистиллатных фракций, выделенных адсорбционным методом. При температуре 450 " С, объемной скорости 1,0 час и продолжительности цикла 30 мин. на катализаторе с индексом активности 36 каталитический крекинг фракций смол давал следующие выходы в весовых процентах [c.138]

    При изучении каталитического крекинга парафинов возникает важный вопрос какие из множества наблюдаемых продуктов являются первичными Ответ на этот вопрос был получен лишь недавно с использованием современных экспериментальных методов и теоретических представлений. К сожалению, в большинстве ранних исследований по каталитическому крекингу скорость реакции определя(ли по выходу различных продуктов. Такой метод интерпретации активности приводил к существенным расхождениям при попытках сопоставить работы разных авторов. Кроме того, как мы увидим позже, полностью игнорировалось отравление катализатора и сообщались результаты, полученные при неодинаковом времени проведения процесса, т. е. на катализаторах, отличающихся по степени закоксованности. Этот фактор, как теперь хорошо известно, оказывает большое влияние на состав образующихся продуктов (см. разд. 4.2) и осложняет сопоставление данных различных публикаций. Например, в работе [11] приведены выходы различных углеводородов, полученные при крекинге гексадекана на алюмосилнкатноциркониевом катализаторе при 500 °С и 24%-й конверсии (моль на 100 моль)  [c.77]

    Обсуждая крекинг индивидуальных парафинов, мы рассмотрели различные гипотезы относительно начальной стадии процесса. В случае крекинга газойлей сложность возрастала из-за того, что это сырье содержит компоненты различной молекулярной массы. В результате основное обсуждение крекинга газойлей сосредоточилось на поверхностных характеристиках общей конверсии или суммарной селективности. Несомненно, что если бы были установлены кинетические параметры крекинга газойлей, можно было бы получить большой объем информации, изучая их изменение в зависимости от составов сырья и катализатора. Корма и Войцеховский [43] попытались объяснить влияние активных центров различных типов при каталитическом крекинге газойля, сопоставляя кинетические параметры, полученные с использованием модели ВПП, с экспериментальными данными по крекингу газойля на двух различных цеолитных катализаторах. Так как в обоих случаях применялось одно и то же сырье, ясно, что все различия в параметрах (табл. 6.1) должны быть связаны со свойствами катализаторов и, в первую очередь, с природой их активных центров. На основании данных ИК-спектроскопии и изучения крекинга кумола, как модельной реакции, обнаружено, что цеолит HY содержит больше центров Бренстеда и меньше Льюиса, чем LaY [58]. С другой стороны, исследование распределения кислотной силы методом Бенеши позволило установить, что число активных центров с рК<6,8 больше па цеолите НУ, тогда как ЬаУ содержит больше сильных кислотных центров с рК<1,5 [43]. Это те самые сильные центры, которым приписывают основную активность в ка-(галитическом крекинге парафинов [59]. В свете этих данных можно представить следующую схему крекинга обычного парафинис-froro газойля. [c.132]

    Из-за высокого содержания полициклических ароматических углеводородов гидроочистка циркулирующих газойлей каталитического крекинга позволяет достигать хороших результатов по выходу бензина и кокса при их последующем крекинге. Поэтому гидроочистке посвящено большое число исследований циркулирующих газойлей с целью улучшения показателей процесса каталитического крекинга 326—331]. Этор метод широко применяется в промышленной практике для увеличения глубины превращения сырья крекинга. [c.76]


Смотреть страницы где упоминается термин Каталитического крекинга метод исследования: [c.125]    [c.163]    [c.282]    [c.283]    [c.173]    [c.188]    [c.84]    [c.41]   
Углеводороды нефти (1957) -- [ c.371 , c.372 , c.381 , c.386 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитический крекинг Крекинг каталитический

Крекинг каталитический



© 2024 chem21.info Реклама на сайте