Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись этилена с водой

    Этилен, окись этилена Вода [c.533]

    Метилэтилкетон — вода Окись этилена — ацетон Окись этилен а — бензол Окись этилена — этанол Окись этилена — этилацетоацетат Треххлористый этилен — керосин Фосфорная кислота (дымящая) — вода Хлор — вода Хлористый водород — вода [c.420]

    Хлорангидриды кислот (в том числе фосген), хлористый водород, перекисные соединения, альдегиды, окись углерода Терефталевая кислота, уксусный альдегид, ацетальдегид, этилен, вода, окись углерода, двуокись углерода [c.255]


    Таким путем из этилена получают окись этилена — исключительно важный промежуточный продукт для промышленности алифатического синтеза. Реакцию этилена с хлорноватистой кислотой можно осуществлять также в условиях образования последней, пропуская одновременно хлор и этилен через воду (процесс Гомберга [16]). По уравнению [c.183]

    Первая реакция ведет к образованию окиси этилена, вторая является реакцией горения этилена до СО, и Н,0. Занумеруем компоненты в следующем по-))ядке 1 — этилен, 2 — окись этилена, 3 — кислород, 4 — вода, 5 — углекислый газ. [c.48]

    Потоки С имеют следующий состав этилен (/ = 1), окись этилена а = 2), кислород ( = 3), вода (/ = 4), двуокись углерода (/ = 5), инерты (/ = 6). Некоторые из указанных компонентов в потоке могут отсутствовать, тогда соответствующее С) = 0 значения н С обозначают величины входных потоков этилена и воздуха. [c.211]

    Примером этому служит развитие промышленности синтетических полимерных материалов, в частности полиэтилена. Исходным сырьем для изготовления полиэтилена является этилен и при том очень чистый. В этилене, идущем на изготовление полиэтилена, примесь таких веществ, как кислород, окись углерода, пары воды и других должна быть не более 10" %, т. е. не более одной-двух молекул на [c.302]

    Из дозирующего устройства емкостью 10 мл откачивают воздух, затем промывают газом из реактора, откачивают остатки предыдущей пробы из системы и начинают подачу пробы (прибор установлен на последовательное течение). Через 5,5 мин прибор переключают на параллельное течение. В этот момент окись этилена и вода распределяются в первой колонке, а двуокись углерода п этилен — во второй. Регистрируют пик окиси этилена, за которым следует фронт воды. Окись этилена и воду выпускают в атмосферу, не пропуская их через вторую колонку. Затем изменяют полюсы мостика, вымывают двуокись углерода и этилен из второй колонки и регистрируют их пики. [c.137]

    При разложении этиленхлоргидрина гидроокисью кальция в аппарате соответствующей конструкции (минимальное время пребывания жидкости в реакционной зоне и возможность быстрого отвода образующейся окиси этилена из этой зоны) выход окиси этилена может достигнуть 96%, считая на превращенный этилен-хлоргидрин . Выход окиси этилена зависит от качества извести, применяемой для разложения этиленхлоргидрина, и от условий ее гашения. Нежелательные примеси (глина, карбонат магния) замедляют гашение извести и ухудшают взаимодействие полученного известкового молока с этилен.хлоргидрином. Известковое молоко готовят путем гашения предварительно раздробленной извести горячей водой (80—85 °С) в специальных аппаратах-гасителях. Для приготовления медленно расслаивающегося и быстро реагирующего с этиленхлоргидрином известкового молока очень важно, чтобы известь была надлежащим образом обожжена. Понижение температуры обжига приводит к тому, что в извести остается необожженный известняк, так называемый недопал при слишком высокой температуре обжига получается пережженная окись кальция, трудно поддающаяся гашению. После гашения известковое молоко отделяется от шлама и стекает в емкости, в которых оно перемешивается во избежание расслаивания при хранении. [c.179]


    Для уменьшения расхода водяного пара и воды на установке имеется теплообменник для нагревания холодного абсорбента, содержащего окись этилена, горячим тощим абсорбентом. Отгоняющиеся с верха десорбера 7 пары окиси этилена, содержащие некоторое количество водяного пара, двуокиси углерода и других примесей, компримируются и направляются на двухколонную систему ректификации. На отпарной колонне 9 отгоняется двуокись углерода и другие легколетучие компоненты (этилен, азот). В колонне 10 производится окончательная ректификация окиси этилена, причем в кубе остаются высококипящие примеси вода, ацетальдегид, этиленгликоль. Чистую окись этилена в жидком виде перекачивают в резервуары, где она хранится в атмосфере инертного газа. [c.230]

    Линии I — этилен II—воздух III — вода 1У,—водяной пар V — окись этилена вода VI — вода (рециркуляция) VII — воздух, газы реакции VIII — окись этилена  [c.372]

    Полученное соединение представляет собою водную окись или гидрат окиси однозамещенного диаммония. Гидрата окиси, равно как и просто окиси самого аммония, мы не знаем, но их замещенные производные известны. Гидрат окиси этилен-диаммония легко теряет частицу воды и превращается в окись этилен-аммония. Отнять от последнего соединения частицу воды удается только с трудом, при действии безводной окиси бария. Таким образом, получается этилен-диамин  [c.400]

    В декабре 1803 г. и январе 1804 г. Дальтон прочитал об относительных атомных весах курс лекций в Королевском институте в Лондоне, а в последующие годы еще в большей степени разработал этот вопрос. В 1807 г. о теории Дальтона сообщил химикам его поклонник Томсон в своей Системе химии , а впоследствии обсудил ее также в Истории химии (1830—1831). Господин Дальтон сообщил лше, — писал Томсон , — что атомная теория созрела в ei"o уме во время исследований, которые он проводил над маслородным газом этиленом] и углеродистым водородом [метаном]... Из его опытов следует, что оба эти соединения состоят из углерода и водорода кроме того, он нашел, что углеродистый водород содержит ровно вдвое большее количество водорода, чем масло-родный газ. Это привело его к установлению численных отношений между двумя составными частями и к взгляду на маслородный газ как на соединение, образованное одним атомом углерода и одннм атомом водорода, и на углеродистый водород как на соедипение, образованное одним атомом углерода и двумя атомами водорода. Эта идея была распространена иа окись углерода, воду, аммиак и т. д. Дальтон оп])еделил из известных тогда наилучших анализов атомные веса кислорода, азота и т. д. . [c.169]

    Линии I — кислород II — остаточный газ пиролиза III — нефтяная фракция IV — вода V — масло VI — остаточный газ VII — смола VIII — тяжелые ароматические углеводороды IX —легкие ароматические углеводороды X — окись углерода XI — чистый этилен XII — чистый ацетилен. [c.98]

    Присоединение хлорноватистой кислоты к этилену с образованием этиленхлоргидрина — одна из наиболее важных химичес1 их реакций, с которых началось промышленное производство производных этилена в начале 1920 г. Лабораторный метод получения этиленхлоргидрина этим способом был описан Кариусом в 1863 г. С тех пор хорошо известна необыкновенная реакционная способность этого хлоргидрина и его почти количественное превращение в окись этилена, которая в настоящее время приобрела большое значение. Нефтяной газ с высоким содержанием этилена был известен и получался заводским путем из жиров уже с 1823 г., а из нефтяного газойля примерно с 1873 г. и до настоящего времени. Промышленное производство этиленовых производных в США никогда не базировалось в сколько-нибудь значительных размерах на исиользовании этилена, содержащегося в газах крекинга, получающихся как побочный продукт при производстве бензинов. Развитие этого направления использования этилена сильно ускорилось возможностями, появившимися вследствие открытия Гомбергом реакции этилена с разбавленной хлорноватистой кислотой в системе вода— хлор  [c.370]

    Окисленное серебро адсорбирует этилен и окись этилена, а также диоксид углерода и воду. Марцинковский и Берти [28] показали, что часть этилена адсорбируется на окисленной поверхности серебра обратимо, а часть — необратимо. Измерения были сделаны методом фронтальной хроматографии при ат- [c.228]

    Технологическая схема процесса получения окиси этилена, разработанного фирмой S ientifi Design, изображена на рис. 6.24. Воздух, подаваемый компрессором У, смешивается с этиленом и циркулирующим реакционным газом и вводится в низ контактного аппарата 2, в трубки которого загружен катализатор. Температура окисления регулируется скоростью циркуляции теплоносителя. Реакционные газы охлаждаются в теплообменнике, нагревая циркулирующий газ, и в холодильнике, а затем компримируются дожимающим компрессором 3. Далее газ поступает в основной скруббер 4, где окись этилена улавливается водой. Большая часть выходящего газа направляется на смешение с исходной эти-лено-воздушной смесью, меньшая — в дополнительный контактный аппарат 5 для окисления непрореагировавшего этилена, а затем на промывку водой в дополнительный скруббер 6. Отходящий из скруббера газ выбрасывается в атмосферу. Водные растворы из скрубберов 4 и 6 смешиваются и поступают в десорбер 7. Из верхней части десорбера отводят окись этилена, пары воды и Oj. Они компримируются и направляются на двухступенчатую ректификацию. В колонне 9 выделяется этилен, Oj и другие легкокипящие компоненты. С верха колонны 10 отбирают окись этилена. В кубе этой колонны остаются высококипящие примеси (вода, ацетальдегид, этиленгликоль). [c.206]


    Промышленное окисление пропана и бутанов проводится в США на заводе Бишеп (В1зсЬор). Проводится здесь также и промышленное окисление этилена в окись этилена. Катализатором является серебро на носителе температура реакции 200— 300° окись этилена из отходящего газа сорбируется водой. Этилен обычно берется сильно разведенный инертными газами или воздухом нередко к нему добавляются дихлорэтан или тетраэтилсвинец, как вещества, подавляющие детонацию. Имеется патент [20] на интересный метод окисления пропилена в акролеин. Пропилен при 50—60° пропускается через кислый раствор сульфата окиси ртути, около 20% пропилена при этом реагирует, образуя с хорошим выходом акролеин, выделяющийся при подогреве до 100" [c.465]

    Лефорт первым установил, что этилен можно каталитически окислить в окись этилена [114]. В прежних работах по окислению этилена наблюдали только образование воды, углекислоты и альдегидов [115]. [c.396]

    Взяв в качестве исходных продуктов окись углерода, этилен и иро-нионовую кислоту и ведя процесс при 205—225°, можно получить в отсутствие воды пропионовый ангидрид с выходом 90%  [c.494]

    В Германии этиленхлоргидрин получали непрерывным методом, пропуская в воду одновременно хлор и избыток этилена [34]. Процесс проводили в колоннах, выложенных внутри керамиковыми плитами и затем гуммированных. Не вступивший в реакцию этилен возвращали обратно в процесс, предварительно отмыв от него хлористый водород раствором едкого натра и удалив пары хлорированных углеводородов адсорбцией активированным углем. Выделяющегося при реакции тепла оказалось достаточно, чтобы нагревать до 45° продукты реакции, вытекающие из колонны. Был подобран такой режим процесса, чтобы получить 4—5%-ный раствор хлоргидрина, который без предварительных концентрирования и очистки перерабатывали непосредственно в окись этилена (стр. 188). По сравнению с периодическим методом при проведении непрерывного процесса приходится работать с меньшей степенью превращения, чтобы выдержать на том же уровне количество побочно образуюи1,егося дихлорэтана. [c.185]

    В немецком процессе [38] получившийся в результате реакции между этиленом, хлором и водой (стр. 185) 4—5%-ный водный раствор этиленхлоргидрина, содержавший некоторое количество дихлорэтана, смешивали с 10—20%-ным избытком горячей кашицы гашеной извести и подавали в верхнюю часть колонного реактора, откуда эта смесь стекала вниз, перетекая с полки на полку. В нижнюю часть колонны вводили острый пар с таким расчетом, чтобы жидкость в верхней части все время кипела. Выходящие из аппарата пары состояли из окиси этилена, дихлорэтана и воды. Больитую часть водяных паров конденсировали и возвращали обратно в реактор. Окись этилена отделяли от дихлорэтана и остатка водяных паров ректификацией под атмосферным давлением на двух колоннах непрерывного действия. В этом процессе потери окиси этилена за счет ее гидратации в этиленгликоль были незначительными. [c.188]

    И ПОД давлением 20—50 ата к продуктам реакции добавляли затем воду, чтобы выделить кислоту в свободном виде [11]. В дальнейшем было установлено, что окись углерода может присоединяться к олефинам в присутствии воды, спиртов, аминов и других соединений, образуя соответственно кислоты, стожные эфиры и амиды. Источником окиси углерода служат карбонилы металлов, выделяющие ее в присутствии кислот мож1ю также проводить каталитическую реакцию с газообразной окисью углерода, используя соль металла, способную в условиях процесса образовывать карбонил [12]. Больше всего внимания уделялось синтезу кислот в присутствии карбонила никеля процесс проводили при 200—300° и 150 ат. Этим способом можно превратить этилен в пропионовую кислоту или ее ангидрид. [c.197]

    Выходящие из контактного аппарата газы содержат кроме окисн этилена пары воды, СОг и иепрореагировавший этилен. Пройдя теплообменник / и холодильник 4, образовавшаяся смесь направляется в абсорбциоииую колонну 5, в которой окись этилена извлекается из смеем каким-либо подходящим абсорбентом. Насыщенный абсорбент поступает в десорбциоппую колонну 7. В )1делившая-ся окись этилена направляется в сборник 10. [c.119]

    Сжатые воздух и этилен и рециркулирующий газ смешиваются п поступают в контактный аппарат 1, охлаждаемый даутермом. Выходящие из контактного аппарата газы охлаждаются сперва в теплообменнике 2 за счет холодного рециркулирующего газа, а затем в водяном холодильнике 3, после чего насосом 4 подаются для сорбции окпси этплена в скруббер 5. Окись этилепа из контактных газов извлекается водой под давлением, равным давлению в контактном аппарате. [c.297]

    Пробу вводят в прибор при последовательном соединении колонок. Приблизительно через 6 мин производят переключение на параллельное соединение колонок, чтобы не загрязнять водой и окисью этилена колонку с силикагелем, включаемую специально для разделения этилена и СО2. В этот момент окись этилена и вода находятся в первой колонке, заполненной целитом, содержащим и-октадекан, в то время как воздух уже вышел из прибора, а СО2 и этилен разделяются на газоадсорбционной колонке. В качестве детектора служит лишь один катарометр, к измерительной и сравнительной камерам которого присоединяется та или другая колонка. Для того чтобы пики записывались в одном направлении, производят переполюсовку детектора после прохождения фракции. [c.227]

    Вода, окись этилена, окись пропилена, этилен-глпколь, пропиленгликоль Синахром 1.8X5 158 Водород 60 Катарометр [1] [c.151]

    Ацетамидин, употребляемый в подавляющем числе синтезов пиримидинового компонента тиамина, может быть получен из ацетамида через ацето-иминоэфир. Ацетамид, с прекрасным выходом получаемый насыщением уксусного ангидрида или уксусной кислоты аммиаком или при отгонке воды из смеси уксусной кислоты и углекислого аммония 1205 ], дегидратируется при взаимодействии с хлорокисью фосфора при 100—150° С, образуя ацетонитрил. Его также получают непосредственно из уксусной кислоты и аммиака при пропускании смеси их паров над окисью алюминия или окисью тория при температуре 400—500° С [206], над селикагелем при 500° С с выходом 95% [207] или над смесью селикагеля и фосфорной кислоты при 280—300° С с выходом 87% [208]. Для получения ацетонитрила можно подвергнуть парофазной конденсации пентан и аммиак при 520° С над алю-момолибденовым катализатором (выход 43,8%) [209] или этилен и аммиак над окислами металлов, нанесенных на окись алюминия [210]. [c.399]

    Этилен должен быть тщательно очищен, так как такие примеси, как вода, кислород, окись и двуокись углерода, являются ка-тализаторными ядами. [c.79]

    В продуктах радиолиза этиленгликоля в зависимости от условий его проведения найдены альдегиды (муравьиный, уксусный, гликолевый, янтарный, глиоксаль), кислоты (уксусная, щавелевая, гликолевая, глиоксалевая), спирты (метиловый, этиловый, эритрит) и другие кислородсодержащие соединения (ацеталь, этилацетат, метилдиоксолан), а также газообразные продукты (водород, кислород, окись углерода, метан, этан, этилен). Кроме того, образуется и вода. [c.28]

    Ог летим некоторое сходство отношения этилена и его окиси к воде, которое можно объяснить сходством строения их молекул. Валентное состояние углеродных атомов у этих соединений близко к триплетному . Этилен и окись этилена образуют с водой весьма близкие по составу кристаллогидраты. Состав кристаллогидрата этилена определяется формулой С2Н4-6Н20, теплота его образования составляет 15,4 ккал/моль. Окись этилена также способна образовывать с водой кристаллическое oeдинeниe . Очень легко образуется гидрат при сливании предварительно охлажденных окиси этилена и воды. Подробнее условия образования гидрата окиси этилена описаны на стр. 36 и 50. [c.92]

    На рис. 43 показана одна из схем производства окиси этилена каталитическим окислением этилена. Очищенные от примесей воздух и этилен смешиваются с рециркулирующим газом и поступают в основной реактор 1 (реактор первой ступени). Выходящие горячие газы, пройдя теплообменник 5,нагревают рециркулирующие газы, сжимаются компрессором 8 и поступают в основной абсорбер 2 (абсорбер первой ступени), в котором окись этилена и образующиеся в качестве побочных продуктов незначительные количества ацетальдегида и часть двуокиси углерода поглощаются водой. После абсорбера 2 большая часть газов возвращается в цикл на смешение со свежим этиленом и воздухом, а остальные газы после нагревания в теплообменнике смешиваются с добавочным количеством воздуха и поступают в дополнительный реактор 3 (реактор второй ступени). Добавочное количество воздуха вводится для более полного окисления этилена в реакторе 3. Отвод образующегося тепла из обоих реактаров Производится циркулирующим теплоносителем, который, в свою очередь, отдает тепло кипящей воде. Таким образом, теплота реакции используется для получения водяного пара. [c.227]

    На рис. 44 показана схема производства окиси этилена, разработанная фирмой S ientifi Design (США) <. Воздух сжимается компрессором /, смешивается с этиленом и рециркулирующим газом и вводится в низ трубчатого реактора 2. Температуру окисления регулируют циркуляцией органического теплоносителя. Газ, содержащий окись этилена, на выходе из реактора охлаждается сначала в теплообменнике, нагревая циркулирующий газ, а затем в водяном холодильнике, после чего сжимается циркуляционным компрессором, 3. Далее газ поступает в абсорбер 4, где окись этилена абсорбируется водой. [c.229]


Смотреть страницы где упоминается термин Окись этилена с водой: [c.169]    [c.44]    [c.231]    [c.370]    [c.115]    [c.27]    [c.74]    [c.389]    [c.398]    [c.413]    [c.300]    [c.341]    [c.401]    [c.996]    [c.99]    [c.125]   
Катализ в промышленности Том 1 (1986) -- [ c.222 ]




ПОИСК





Смотрите так же термины и статьи:

Этилен окись



© 2024 chem21.info Реклама на сайте