Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плотность масляных фракций

    Химический состав фракций нефти, перегоняющейся выше 300 °С, очень сложен. Помимо высокомолекулярных (в основном, гибридных) углеводородов в масляных фракциях присутствуют кислородные, сернистые и смолистые вещества, а также твердые парафины. Комбинируя различные способы разделения, прежде всего отделяют твердые парафины и смолистые вещества. Дальнейшее разделение на более узкие фракции возможно путем вакуумной разгонки, адсорбции на различных сорбентах и другими методами. Полученные тем или иным путем узкие фракции подвергают затем детальному исследованию. Определяют их элементарный состав, молекулярную массу, плотность, показатель преломления, вязкость, анилиновую точку, температуру застывания. Рассчитывают удельную рефракцию и интерцепт- рефракции. По молекулярной массе и элементному составу выводят эмпирические формулы углеводородных рядов. [c.68]


Рис. 3. Соотношение между рефракцией молекулярным весом М и плотностью й для насыщенных масляных фракций. Рис. 3. <a href="/info/26387">Соотношение между</a> <a href="/info/13831">рефракцией молекулярным</a> весом М и плотностью й для насыщенных масляных фракций.
    Пропан применяется как в качестве самостоятельного растворителя, так и в комбинации с другими жидкостями [52—56]. При температуре окружающей среды пропан растворяет исходное масло, а при повышении температуры до 40—60 °С из раствора выделяются смолистые и асфальтовые соединения. При критической температуре пропана 96,8 °С его растворяющая способность падает до минимума и выделяются последующие масляные фракции. Разделение масла происходит по плотности фракций и имеет сходство с эффектом дистилляции, но из-за относительно низких температур проходит в более постоянных условиях. Пропан не отделяет ароматических и нафтеновых углеводородов от парафиновых, и экстракция с его участием нисколько не улучшает свойств масел. Ранее же описанные растворители повышают качество масел. В связи с этим обработка масел пропаном служит только для удаления асфальтовых соединений. [c.394]

    Химический состав масляных фракций более сложен и разнообразен, чем состав светлых нефтепродуктов. В маслах содержание алканов, цикланов и ароматических углеводородов, в сумме, как и в светлых нефтепродуктах, преобладает над содержанием нежелательных примесей. Однако последних, особенно смолистых и других кислородсодержащих, непредельных, сернистых, азотистых веществ, здесь значительно больше. Содержание наиболее стойких углеводородов — алканов — уменьшается по мере повышения плотности и вязкости масел. Содержание же многоядерных углеводородов сильно увеличивается некоторая часть их должна быть удалена для улучшения вязкостно-температурных свойств, а также для уменьшения коксового числа и способности масел к нагарообразованию. [c.322]

    Далее в зависимости от октановых чисел бензина, содержащего 40% до 100", и тракторного керосина, а также в зависимости от плотности масляной фракции вязкостью БУво = 7 нефти делятся на следующие типы  [c.50]

    В табл. 9 приводятся данные исследования фракций ароматических углеводородов, выделенных из масел различных нефтей [4, 12]. Из этих данных следует, что характер ароматических углеводородов масляных фракций, кипящих в одних и тех же пределах температуры, резко отличается по всем физико-химическим показателям. Первые фракции ароматических углеводородов, десорбированных с силикагеля изооктаном (или другими аналогичными неполярными растворителями), отличаются низкими значениями плотности и коэффициента преломления, высоким молекулярным весом и индексом вязкости, близким к индексу вязкости нафтеновых фракций. Кольцевой анализ по методу п-й-М показал, что эти углеводороды имеют одно ароматическое кольцо, несколько нафтеновых колец и значительное количество атомов углерода в боковых цепях. Фракции ароматических углеводородов, десорбируемых бензолом, имеют высокие плотности и удельную дисперсию, относительно низкий молекулярный вес и крайне низкие значения индекса вязкости. Кольцевой анализ показывает [c.21]


    При построении кривой равновесия для системы масло—растворитель пользуются каким-либо свойством масляной фракции, например показателем вязкости (ПВ) или постоянной вязкость—плотность (ВП). Для высокопарафинового масла ВП=0,8, для ароматического ВП=0,95. В треугольнике состава на стороне АВ наносятся деления от 0,8 до 1,0. Чистому рафинату соответствует точка А (ВП=0,8), экстракту—точка В (ВП=1,0), сырому маслу—точка на прямой АВ. В этой системе можно вычертить кривую равновесия для исследуемого масла, найдя ВП, которую получают каждый раз для других количеств растворителя, рафината и экстракта, свободного от растворителя, а затем с учетом содержания растворителя. Если пользоваться показателем вязкости, то деление прямой АВ будет иным в точке В (экстракт) ПВ=0, а в точке А (рафинат) ПВ = 100. [c.381]

    Растворяющая способность полярных и неполярных растворителей по отношению к компонентам масляных фракций резко изменяется в тех случаях, когда температура раствора приближается к критической температуре данного растворителя (КТ). С повышением температуры в области предкритического состояния растворяющая способность растворителя по отношению к компонентам масляного сырья уменьшается, что связано с резким падением плотности растворителя. При КТ растворителя и выше нее все компоненты растворенного продукта выделяются из раствора. [c.64]

    Опыт по фракционированию адсорбционного слоя, проведенный с нефтью СКВ. 378, дал следующие результаты. По описанной методике определения адсорбции асфальтенов адсорбент (кварцевый песок) помещали в нефть. Затем нефть с адсорбента удаляли вазелиновым маслом. Адсорбент с адсорбционным слоем очищали от вазелинового масла экстракцией горячим н-гексаном в аппарате Сокслета. Адсорбционный слой снимали с адсорбента горячей спиртобензольной смесью и фракционировали. Коэффициент светопоглощения адсорбционного слоя составлял 6480. Экстракция изопропиловым спиртом показала отсутствие масляных фракций при экстракции гексаном выделено 22% смол, имеющих коэффициент светопоглощения 900. Оставшиеся 78% асфальтенов имели коэффициент светопоглощения 8070. Учитывая аддитивность оптической плотности, для всего адсорбционного слоя это составит 6493, что в пределах ошибки измерения совпадает с экспериментально измеренным значением 6480. Из этого следует, что часть смол остается на адсорбенте вместе с асфальтенами адсорбционного слоя. Разделение смол и асфальтенов адсорбционного слоя возможно только после снятия его с адсорбента. Причем коэффициент светопоглощения асфальтенов адсорбционного слоя (8070) даже после дополнительной очистки от смол остается значительно меньше, чем у асфальтенов объемной нефти (12460) (см. табл. 18). [c.62]

    Сырье и продукция. Сырьем для получения твердых парафинов служит гач — побочный продукт производства смазочных масел, получаемый при депарафинизации масляных фракций селективными растворителями. Гач, получаемый при депарафинизации масляных фракций из восточных нефтей, имеет следующую характеристику плотность р —0,840—0,860 температура вспышки в закрытом тигле — 200—220 °С температура плавления — 48—52 °С содержание масла — [c.83]

    В нефтяной практике наиболее широко распространен криосконический метод и в очень редких случаях прибегают к помощи метода, основанного на измерении плотности паров. В последнее время все большее применение находит эбуллиоскопический метод, особенно при определении углеводородного состава масляных фракций при помощи кольцевого анализа. [c.60]

    Масляная фракция имеет плотность 4 =0,873 и условную вязкость [c.29]

    В 1947 г. Тадема предложил еще более простой и достаточно надежный метод п — й — М, получивший широкое распространение, в частности при структурно-групповом анализе советских нефтей. Содержание колец и распределение углерода вычисляются с применением формул и номограмм на основе значений удельной рефракции, плотности и молекулярной массы. Тадема установил линейную зависимость между составом масляных фракций и указанными величинами  [c.149]

    Химический состав фракций, выкипающих выше 300° С, очень сложен. Помимо высокомолекулярных и гибридных углеводородов в масляных фракциях присутствуют кислородные, сернистые, азотистые и смолистые вещества, а также твердые парафины. Комбинируя различные способы разделения, из масляных фракций сначала выделяют твердые парафины и смолистые вещества. Дальнейшее разделение на более узкие фракции проводят вакуумной разгонкой, адсорбцией на различных сорбентах и др. Полученные узкие фракции детально исследуют (определяют элементарный состав, плотность, молекулярную массу, показатель преломления и т. п.). По этим данным, а также сравнением с физическими константами известных синтезированных соединений удается в ряде случаев установить отдельные типы молекул и их соотношения в исследуемых фракциях. [c.135]


    В масляных фракциях, полученных перегонкой из одной нефти, вязкость правильно возрастает с повышением температур начала и конца кипения данной фракции одновременно возрастают плотность и молекулярный вес. Если, однако, сравнивать масляные фракции различных нефтей, выкипающие в одних и тех же пределах, или даже соответствующие фракции, полученные из одной нефти, но подвергавшиеся разной очистке, то вязкости таких масел могут оказаться совершенно различными. Это объясняется неодинаковым химическим составом нефтей, из которых получены масла, или разным отношением входящих в состав масла углеводородов и других соединений к реагентам, применяемым при очистке. [c.112]

    В качестве масляных фракций используются фракции, выкипающие в интервале температуры 100—240° при 0,3 мм рт. ст. Содержание хлора в них достигает 31—32% (в мономере 30,4%). Это бесцветные, как вода, подвижные жидкости плотностью 1,94—1,97 при 20° и 1,83—1,86 при 100°. Обычные полимерные масляные фракции растворимы в содержащих хлор растворителях, не полностью растворимы в низкокипящем петролейном эфире. Растворимость их уменьшается по мере увеличения молекулярного веса. На этом принципе может быть осуществлено и фракционирование полимерных масел [32]. [c.505]

    Высокими индексами вязкости обладают базовые масляные фракции, в состав к-рых входят преим. нафтены с небольшим содержанием циклов в молекулах и длинными малоразветвленными парафиновыми цепями. Нафтеновые и ароматич. углеводороды с относительно высоким содержанием циклов имеют более высокие плотность и вязкость (значительно возрастающую при понижении т-ры), чем циклич. углеводороды, к-рые кипят в тех же температурных пределах, ио с малым числом циклов (табл. 10). [c.235]

    Сырье - рафинат 3 масляной фракции (350-420°С) с плотностью р = 0,8670 [c.31]

    Это объясняется рядом причин. Во-первых, повышенная температура образовавшегося коксового слоя обусловливает большую степень отгона летучих веш,еств из него ( подсушка кокса). Во-вторых, при отгоне масляных фракций из тяжелых нефтяных остатков улучшаются механические качества получаемого кокса, понижается его пористость и увеличивается кажущаяся плотность [9]. [c.114]

    Ватерман (Waterman) с сотрудниками в Голландии [27] создали свой метод исследования на основании условного деления масляных фракций на структурные группы ароматические кольца, циклановые кольца, замещающие алкановые цепи и свободные алканы. Метод дает процентное содержание углерода, входящего в состав каждой группы. Анализ основан на определении соотношения физических свойств масел, таких, как плотность, молекулярный вес и коэффициент преломления (метод n-d-M), или [c.24]

    При одинаковой температуре плавления церезины отличаются от парафинов большими молекулярными массами, вязкостью и плотностью. В твердых углеводородах присутствуют нафтеновые структуры. Твердые парафины выделяют из петролатумов и вырабатывают при депарафинизации дистиллятных масляных фракций. [c.42]

    Установлено, что при экстракции неполярными экстрагентами при температурах вблизи критического состояния растворителей также проявляется избирательная растворимость высокомолекулярных углеводородов масляных фракций. Обусловливается это тем, что с приближением температуры экстракции к критической происходит резкое снижение плотности растворителя и соответственное ослабление прочности связей между молекулами растворителя и растворенных в нем углеводородов. В то же время силы дисперсионного взаимодействия между молекулами самих углеводородов при этом практически не изменяются. В результате при определенных температурах внутримолекулярные силы углеводородов могут превысить [c.267]

    Различие в температурных условиях экстракции предопределяется плотностью применяемости растворителя. При фенольной очистке из-за низкой разности плотностей растворителя и исходного сырья градиент экстракции снижают до минимума, так как при смешении вторичных потоков с близкими удельными массами сепарация фаз происходит гораздо медленнее и даже при сравнительно невысоких скоростях в экстракционных колоннах приходится принимать конкретные меры к снижению степени внутренней циркуляции промежуточных масляных фракций. Повышение градиента эк- [c.290]

    По маслам 1—нефть, с высокоиндексными маслами (плотность масляной фракции 0,903 и ниже) 2 — нефть со среднеиндексными маслами (0,904—0,927) 3 — нефть с низкоиндексными маслами (более 0,927) О — нефть, не содержащая масел. [c.51]

    Установлено, что при экстракции неполярными экстрагентами при гемпературах вблизи критического состояния растворителей также проявляется избирательная растворимость высокомолекулярных углеводородов масляных фракций. Обусловливается это тем, что с приближением температуры экстракции к критической про — исхо, ит резкое снижение плотности растворителя и соответственное ослабление прочности связей между молекулами растворителя и растворенных в нем углеводородов. В то же время силы дисперсионного взаимодействия между молекулами самих углеводородов при этом практически не изменяются. В результате, при определен — 1ГЫХ гемпературах внутримолекулярные силы углеводородов могут превысить межмолекулярные силы взаимодействия между растворителем и углеводородами и последние выделяются в виде дисперсной фазы. При этом, поскольку энергия дисперсионного взаимодействия является функцией от молекулярной массы молекулы, в первую очередь из раствора выделяются наиболее высокомолекулярные смолисто-асфальтеновые соединения, затем по мере повышения температуры — углеводороды с меньптей молекулярной массой. При температурах, превышающих критическую,из раствора выделяются все растворенные в нем соединения независимо от молекулярной массы и химической структуры углеводородов (рис.6.4). [c.221]

    Различие в температурных условиях экстракции предопределяется плотностью применяемости растворителя. При фенольной очистке из-за низкой разности плотностей растворителя и исходного сырья градиент экстракции снижают до минимума, так как при смешении вторичных потоков с близкими удельными массами сепарация фаз происходит гораздо медленнее и даже при сравнительно невысоких скоростях в экстракционных колоннах приходится принимать конкретные меры к снижению степени внутренней циркуляции промежуточных масляных фракций. ПовышеЕтие градиента экстракции приводит к заметному повышению относительных скоростей контактирующихся фаз, в результате на отдельных участках по высоте экстракционной колонны не достигает фазовое равновесие. Крометого, эмульгируемость системы фенол —углеводороды еще более ухудшает фазовое равновесие в потоках. Более высокая плотность фурфурола позволяет вести процесс очистки с высоким градиентом экстракции. [c.242]

    Плотность и коэффициент преломления ароматических углеводородов, выделенных из тяжелого нефтяного сырья, а также обеспарафиненных циклопарафинов, свободных от ароматики, вообще высоки и намного больше, чем плотность и коэффициент преломления производных бензола и моноциклических циклопарафинов, кипящих в тех же пределах, что и сырье. Кроме того, плотность и коэффициент преломления быстро возрастают с увеличением температуры кипения тяжелых нефтяных фракций. Эти факты приводят к выводу о том, что циклопарафины и ароматические углеводороды тяжелого нефтяного сырья являются преимущественно полициклическими и что полициклический характер этих углеводородов усиливается с увеличением пределов выкипания фракций. Число колец в полицикли-ческих углеводородах различно для разных нефтей. Тяжелый газойль и масляные фракции из пенсильванской нефти содержат меньше полициклических углеводородов, чем эти же фракции из калифорнийской нефти. [c.30]

    Совсем недавно Боэльгувер, Ван-Стсенис и Уотерман [6] опубликовали статью, содержащую данные по гидрированным масляным фракциям, полученным из девяти нефтей. Они нашли, что на графиках зависимости логарифма кинематической вязкости от коэффициента преломления или от плотности моншо провести линии, соответствующие равному содержанию колец. По этим графикам можно определить число колец, приходящихся на молекулу гидрированной фракции, с точностью до 0,1 кольца. Желающие воспользоваться графиком должны обратиться к оригинальной статье ввиду того, что его трудно воспроизвести в форме, пригодной для использовашя. [c.274]

    Денсиметрический метод. В 1944 г. Линдертсе успешно разработал метод, основанный на измерении плотности с1, удельной рефракции (по Лорентц-Лоренцу) и молекулярногс веса М. Метод основан на сопоставлении прямого метода с физическими свойствами большого числа прямо-гонных или обработанных масляных фракций. Методика определения очень похожа на методику кольцевого анализа по Уотерману. Основное различие заключается в том, что вместо анилиновой точки определяется плотность. [c.377]

    Суспензия парафина и смол в холодном лигроине тяжелей раствора масла в ней мягкий слой этих веществ, содержащий большое количество лигроина, медленно оседал из смеси. Выход был довольно мал, и вследствие плохого разделения температура застывания полученного масла не была достаточно низкой. Процесс центрифугирования не вносит принципиальных изменений в эту схему, но в целом получаемые результаты значительно лучшие [84—87]. Раствор цилиндрстока или широкой масляной фракции в двух или двух с половиной кратном объеме лигроина (плотность 0,74) медленно охлаждают со скоростью 1,5 С в час при естественной циркуляции в растворе. [c.526]

    Экстракция водным раствором метанола 1214, 217—219, 222, 225, 233, 234, 2391, известная под названием метод Метасольван, является чисто физическим процессом. В качестве растворителя применяется водный раствор метанола (70—80 вес. %). Увеличение концентрации метанола повышает растворимость, но снижает избирательность экстракции, кроме того уменьшается разность плотностей метаноловой и масляной фракций, что затрудняет разделение фаз. Кроме фенола, в растворе метанола растворяется еще и некоторое количество компонентов масла (до 20%), которые невозможно отделить путем дистилляции. Чтобы уменьшить содержание этих масел, к метанолу добавляют еще так называемые вспомогательные растворители либо ими промывают ме-таноловую фракцию. Эффективными оказались насыщенные углеводороды с низкими температурами кипения, например гексан, относительно легкие фракции (60—100 Т.), полученные из нефтяного газолина, из продуктов синтеза Фишера—Тропша и даже из жидких продуктов сухой перегонки. Так как из масел при контакте с метаиолом выделяются хлопьевидные осадки, для экстракции пользуются только механическими колоннами [233, 239] или установками типа мешалка—отстойник. [c.416]

    Нафтеновые углеводороды масляных фракций различаются не только по числу колец в молекуле, но и по их природе. При помощи масс-спектрометри ческого анализа в масляной части нефти установлено присутствие пяти- и шестичленных нафтеновых углеводородов, содержание которых зависит от характера нефти и пределов выкипания фракции. Исследование парафино-нафтено-вых фракций масел ряда нефтей, выкипающих в одинаковых пределах [8] показало, что в них преобладают пятичленные нафтены. Соотношение шести- и пятичленных колец в смесях нафтеновых углеводородов можно вычислить, исходя из того, что при одной и той же молекулярной массе их плотности резко различаются Расчеты показали, например, что, нафтено.вые углеводороды смазочных масел нефти месторождения Понка состоят больше чем на половину из гомологов циклопентана. Исследования фракций нефти месторождения Тексас показали, что соотношение циклогексановых и циклопентановых колец в нафтеновых углеводородах колеблется в широких пределах (от 4 1 до 1 9) и за- висит от пределов выкипания фракции. [c.10]

    При температурах, достаточно удаленных от КТР, по избирательности разделения в полярных растворителях углеводороды различных групп располагаются в следующий убывающий ряд неконденсированные ароматические>конденсираванпые ароматические >(нафтено-а,роматические>алкилароматические> нафтено-вые>непредельные>парафиновые. В полярных растворителях избирательность разделения тем выше, чем больше плотность и поляризуемость компонентов масляной фракции. Это хорошо показано [4] на примере экстракции полярными растворителями смесей,, состоящих из компонентов масляной фракции 425—475°С. [c.59]

    С. Э. Крейн и В. Л. Вальдман [3] отделили нафтены некоторых масляных фракций от парафинов при помощи адсорбции на активированном угле. Например, при выделении нафтеновых углеводородов из парафино-нафтеновых фракций масел вязкостью 18 имЦс при 100 °С различных нефтей установлено, что их плотность и показатель преломления больше, а температура застывания ниже, чем у исходных фракций  [c.263]

    В результате работ по исследованию нефте , проведенных в различных странах за последние 40 лет, разработана общая методика исследования состава нефти. Вначале нефть обезвоживают и обессоливают, определяют ее основные константы плотность, показатель лучепреломления, молекулярную массу, вязкость, элементный состав. Затем проводят перегонку нефти для получс-ния бензиновой, керосиновой, газойлевой и масляных фракций и остатка. Перегонка проводится вначале при атмосферном давлении до 200°, а затем — в вакууме для того, чтобы избел ать возможных химических превращений углеводородов нефти под действием тепла. Остаток анализируется отдельно. [c.10]

    Плотность нефтяных фракций зависит от давления. Эта зависимость выражена для дистиллятных фракций более четко, чем для остаточных. В интервале температур до 340 °С изменение давления от 0,1 до 10 МПа приводит к увеличению плотности прямогониых нефтяных остатков не более чем на 2,5 % [43]. В небольших пределах изменений давлений зависимости плотности реактивных топлив от давления носит линейный характер [44]. Влияние химического состава масел на зависимость плотности от давления изучалось на примере отдельных групп углеводородов легких масляных фракций в изотермических и изобарических условиях [45]. [c.19]

    Эти результаты были получены при изучении ароматических углеводородов, выделенных при помощи насыщенного раствора сернистого ангидрида в метиловом спирте. Однако этим способом не удается извлечь все ароматические углеводороды, содержащиеся в масляных фракциях нефтей, не извлекаются ароматические углеводороды с длинными алкильными цепями. Судя по величинам плотности ароматических углеводородов, исследованных в Гроз-НИИ (табл. 7), они относятся к соединениям, содержащим короткие алкильные цени, так как углеводороды, например, такие, как триоктилбензол, имеют плотность 0,857, а октилнафталин 0,940 [23] и таким образом в изученные ГрозНИИ ароматические фракции не попадают. [c.19]

    Исследования фракций ароматических углеводородов масел, масляных дистиллятов и остатков, выполненные за последнее время при помощи хроматографического анализа полученных узких фракцийТ Отгазывают, что зйй чителъная часть, а возможно, и основная ароматических углеводородов в масляных фракциях нефтей представляет собой нафтено-ароматические углеводороды. Известно, что нафтено-ароматические углеводороды имеют большие значения плотности, коэффициента преломления и более низкие вязкостно-температурные характеристики, чем аналогичные по строению ароматические углеводороды. [c.21]

    Одним из важных показателей тойарного качества нефти явля-етсй ее плотность, которая колеблется от 760 до 980 кг/м . Легкие нефти с плотностью до 880 кг/л1 наиболее ценные, так как содер жат больше бензиновых и масляных фракций, Часто пользуются понятием относительная плотность нефти, иод которой подразумевается отиотеиие массы нефти к массе того же объема дистиллированной воды при температуре 4 С (при 4 С плотность воды наибольшая).  [c.10]


Смотреть страницы где упоминается термин Плотность масляных фракций: [c.48]    [c.35]    [c.238]    [c.378]    [c.252]    [c.54]    [c.133]    [c.252]    [c.113]    [c.113]   
Углеводороды нефти (1957) -- [ c.50 , c.64 , c.65 ]




ПОИСК







© 2025 chem21.info Реклама на сайте