Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Чистые углеводороды

    Иа рис. 59 приведена схема однопоточного каскадного цикла. Ее особенность — получение хладагента из газа, подлежащего сжижению. Исходный газ разделяется на два потока один после дросселирования направляется в теплообменник <3, где охлаждается холодным потоком остаточного газа, другой поток — в теплообменники 2, 4. После охлаждения оба потока смешиваются и поступают в сепаратор 5, Углеводородный конденсат из сепаратора 5 направляется на газофракционирующую установку 10 и разделяется на индивидуальные углеводороды (этан, пропан, бутан) и пентаны + высшие. На основе чистых углеводородов готовится холодильная смесь. Отсепарированный газ из сепаратора 5 после сжижения в теплообменнике 6 дросселируется и поступает в отпарную колонну 7. В колонне из сжиженного газа отпариваются азот и часть метана, уходящие через верх колонны. Сжиженный природный газ из нижней ча-204 [c.204]


    В производстве изопренового каучука произошел взрыв изопен-тана на открытой площадке цеха. Загазованность воздуха углеводородами на территории производства создалась при сливе водного слоя из разделителя изопентан-изопреновой фракции и воды. Водный слой, насыщенный углеводородами, без предварительной дегазации на отпарной колонне сливали в канализационный холодец. На разделителе отсутствовал регулятор уровня раздела органического слоя и воды, поэтому в канализацию могли попасть и чистые углеводороды из органического слоя. Таким образом, периодически создавалась дополнительная загазованность углеводородами в системе канализации и на открытой площадке территории вокруг канализационных колодцев. Воспламенение и взрыв углеводородо-воздушной смеси произошли от искрения электропогрузчика, проезжавшего в зоне загазованности. [c.131]

    В настоящее время продукты каталитического и термического крекингов чистых углеводородов изучены достаточно хорошо, что позволяет дать детальную характеристику этих процессов. По-ясно наблюдаемой разнице в составе продуктов можно установить наличие двух типов разрыва углерод-углеродной связи. Как будет показано ниже, для каталитического крекинга типичным является ионное (с участием иона карбония) гетеро-литическое расщепление связи С—С, что выражается следующей электронной схемой  [c.114]

    В литературе описано много небольших ректифицирующих устройств высокой эффективности, пригодных для фракционировки как малых количеств, так и десятков литров, поэтому здесь мы лишь упоминаем об этом [18, 41, 144]. Фракции, которые обладают постоянным плато в точке кипения и соответствующими плотностью, показателем преломления и температурой замерзания, можно рассматривать как чистые углеводороды. Когда углеводороды застывают при низких температурах, температура кристаллизации является наиболее чувствительным критерием их чистоты 183]. [c.427]

    Содержание чистых углеводородов может доходить до 97—98%, как в нефтях Пенсильвании, или составлять всего 50%, как в некоторых нефтях Мексики или Миссисипи. Даже в том случае, если нефть содержит около 50% неуглеводородных соединений, она тем не менее сохраняет основные свойства углеводородов, потому что почти любая молекула, входящая в состав неуглеводородных соединений нефти, содержит всего один-два инородных атома. [c.11]


    При промышленных процессах хлорирования, осуществляемых с применением не вполне чистого хлора, когда в реакционной среде неизбежно присутствуют примеси, вызывающие обрыв цепи, длина реакционной цепи оказывается значительно меньшей, чем при научных исследованиях, обычно проводимых с применением свежеперегнанного хлора и столь же чистых углеводородов в кварцевой аппаратуре, т. е. в условиях, при которых в значительной степени устраняются факторы, способствующие обрыву реакционной цепи. [c.140]

    Наоборот, фотохимическая реакция хлорирования протекает очень быстро, так что в этом случае реакция 1 проходит значительно быстрее, чем превращение псевдокислоты в ациформу. Поэтому хлорирование нитропарафинов происходит аналогично хлорированию чистых углеводородов. [c.272]

    Не растворимые в щелочи, но растворимые в петролейном эфире соединения снова возвращают в процесс нитрования. Ввиду наличия в них продуктов окисления (кетонов, спиртов), которые при дальнейшем окислении образуют карбоновые кислоты, расход азотной кислоты повышается по сравнению с расходом ее при использовании чистых углеводородов. [c.312]

    Как уже упоминалось, ректификацией можно отделить только сульфофториды, полученные из чистых углеводородов. При сульфохлорировании углеводородных смесей разгонкой невозможно добиться полного разделения сульфохлоридов. [c.378]

    Состав газов каталитического крекинга чистых углеводородов [c.131]

    Сырая нефть обычно состоит из чистых углеводородов, небольшой концентрации кислорода, азота, серосодержащих компонентов и неорганических солей, загрязняющих нефть. [c.18]

    Изложенные выше результаты составляют лишь незначительную часть исследований, проведенных над разнообразными чистыми углеводородами [29, 36] как олефиновыми и парафиновыми, так и алкилирован-ными ароматическими (типа бутилбензола). [c.168]

    Каталитический крекинг чистых углеводородов. [c.418]

    Химическое удаление разделяющего агента. Химическое удаление разделяющего агента применяется в специальных случаях. Иногда химическую реакцию можно направить таким образом, что окажется возможным получение в чистом виде как продукта, так и разделяющего агента. Для разделения в лабораторных условиях часто применяют разделяющие агенты, которые могут быть удалены химическим путем, потому что это сильно упрощает методику лабораторного эксперимента. Для этой цели можно пользоваться органическими кислотами, аминами, аммиаком и жидким ЗОд. В Бюро стандартов США [30] при выделении чистых углеводородов иа лигроинов прямой гонки в качестве разделяющих агентов применялись органические кислоты. Разделяющий агент удалялся из азеотропной смеси посредством обработки раствором едкого натра. [c.127]

    Не считая нормальных алканов из нефтяных смазочных масел, до сих пор не выделили ни одного химического соединения, приближающегося по свойствам к чистым углеводородам, и даже самые узкие фракции, полученные в результате всех доступных исследователям методов разделения, состоят из нескольких типов углеводородов. [c.24]

    Значительным успехом технологии получения бензинов способствовала доступность чистых углеводородов от 4 ДО Сц,. Вполне естественно распространить этот опыт на высшие углеводороды, потому что исследования в области чистых высших углеводородов должны облегчить работу по улучшению технологии переработки высококипящих фракций. Возможности такого исследования можно показать на некоторых примерах использования уже имеющихся данных. [c.495]

    Факторы, определяющие выбор метода синтеза. Выбор пути синтеза чистого углеводорода основан обычно на нескольких факторах. Невозможность отделения побочных продуктов от основных мешает использованию хорошо известного метода, если последний допускает одновременное протекание изомеризации, конденсации, многократного замещения или других нежелательных реакций. Следует избегать или тщательно исследовать реакции, допускающие перегруппировку углеродного скелета или введение трудно устранимых примесей в конечном продукте, чтобы устранить всякие элементы сомнения. [c.497]

    Наилучшим способом является хранение чистых углеводородов в запаянных стеклянных ампулах в атмосфере азота, не содержащего примеси кислорода. Перед запаиванием образец углеводорода дегазируется нагреванием в вакууме и удаленный газ заменяется чистым азотом. Если изготовить ампулы с длинными шейками, то можно много раз запаивать их после взятия образца, что позволяет сохранять углеводород в течение длительного времени в одной и той же ампуле. [c.504]

    Каталитический риформинг чистых углеводородов и бензино-лигроиновых фракций. [c.417]

    На практике реакция ведется таким образом, что в сульфохлори-руемый углеводород, помимо хлора и двуокиси серы, вводят инертный газ, как, например, углекислоту или азот, который сначала пропускают через промывную колбу, содержащую тетраэтилсвинец. При этом инертный газ увлекает с собой в реагирующую жидкость некоторые небольшие количества тетраэтилсвинца. При 0° давление пара тетраэтилсвинца составляет 0,047 мм рт. ст., при 25°—0,377 мм рт. ст. При употреблении чистого углеводорода, чистых (црежде всего- не содержащих кислорода) хлора и двуокиси серы для получения 1 моля сульфохлорида требуется приблизительно 0,05 г тетраэтилсвинца. [c.369]


    Чтобы избежать заметного образования ди- или полихлоридов, необходимо при хлорировании удовлетворяться низкими выходами (20—30% в пересчете на взятое количество углеводорода) и отгонкой отделять хлористый алкил от непрореагировавшего углеводорода. Для высокомолекулярных углеводородов, например для С20—С25, различия в температуре кипения между чистым углеводородом и соответствую-лцим хлористым алкилом с одинаковой длиной углеродной цепи уже настолько малы, что о разделении разгонкой не может быть и речи. При таких же величинах молекул, при которых еще возможно отделение углеводорода от хлористого алкила перегонкой, хлорированию должны подвергаться фракции с очень узкими пределами кипения, так как иначе нельзя добиться полного отделения хлористого алкила от отдельных углеводородов, входящих в состав данной фракции. [c.387]

    Ю. К. Юрьев и П. И. Журавлев [5] на искусственных смесях показали, что количество образовавшихся ароматических углеводородов соответствует количеству гидроароматических углеводородов, находящихся в искусственной смеси. Каталитическая циклизация парафиновых углеводородов по методу Б. А. Казанского и А. Ф. Платэ [4] требует особых условий (ат.мосфера инертного газа, многократное пропускание чистого углеводорода) и, несмотря на это, н-октан удается циклизировать только на 12%, в то время как дегидрирование гексагидроароматическнх углеводородов идет количественно при однократном проведении. [c.131]

    Нефть представляет собой многокомпонентное сырье с непрерывным характером распределения фракционно1 о состава и соответственно летучести компонентов. Расчеты показывают, что значение коэффициента относительной летучести непрерывно (экспоненциально) убывает по мере утяжеления фракций нефти, а также по мере сужения температурного интервала кипения фракций. Эта особенность нефтяного сырья обусловливает определенные ограничения как на четкость погоноразделения, особенно относительно высококипящих фракций, гак и по отношению к "узости" фракций. С экономической точки зрения, нецелесообразно требовать от процессов перегонки выделить, например, индивидуальный чистый углеводород или сверхузкие фракции нефти. Поэтому в нефтепереработке довольствуются получением следующих топливных и газойлевых фракций, выкипающих в достаточно широком интервале температур бензиновые н.к.— 140 С (180 °С) керосиновые 140 (180)—240 °С дизельные 240 — 350 °С вакуумный дистиллят (вакуумный газойль) 350—400 °С, 400—450 °С и 450—500 °С тяжелый остаток — гудрон >490 °С (>500 °С). Иногда ограничиваются неглубокой атмосферной перегонкой нефти с получением в остатке мазута >350 °С, используемого в качестве котельного топлива. [c.166]

    Определение октанового числа сводится к сравнению испытуемого бензина с эталонными топливами по их способности вызывать детонацию в этом двигателе. Эталонные топлива составляются путем смешения двух химически чистых углеводородов 1) изооктана С8Н58 (или 2,2,4-триметилнентан) — углеводорода с сильно разветвленной молекулой, октановое число которого условно принято за 100 единиц 2) нормального гептана и-С,Н1д — углеводорода нормального строения, имеющего антидетонационные свойства, условно принятые за нуль. [c.173]

    Содержание углеводородов в нефти уменьшается с увеличением среднего молекулярного веса или с повышением температуры кипения фракций. Нефтяные газы и бензины почти нацело состоят из чистых углеводородов. Дан е в тех случаях, когда бензины получаются из нефти, содержаш ей большие количества серы и кислорода, они также на 98—99% состоят из чистых углеводородов. Наоборот, высококипяш ие остаточные масла беднее углеводородами и во многих случаях состоят преимущественно из неуглево-дородиых тшмпонентов. [c.11]

    Ввиду важности облаете нрименеиия химически чистых углеводородов, содержащих четыре углеродных атома, разделение ц очистка смесей [c.109]

    Фор и Фенске [14, 15] предложили метод структурно-группового анализа, основанный на явлении магнито-оптического вращения чистых углеводородов. Процентное содержание ароматических и нафтеновых колец определяется по кривым удельного и молекулярного вращения серии углеводородов. Для проведения дтруктурно-группового анализа требуется лишь знание молекулярного веса, плотности и магнито-оптического вращения исходного масла. [c.370]

    Уотерман и Линдертсе 1(31] в 1У38 г. нашли, что удельный парахор, представляющий собой функцию молекулярного веса, поверхностного натяжения и плотности, зависят от степени разветвления. Применение этого параметра, однако, ограничивается чистыми углеводородами и сравнительно простыми смесями. [c.372]

    Способы получения парафинов и олефинов целесообразно рассматривать вместе, так как во многих случаях олефины являются промежуточными продуктами при получении парафинов обычными методами гидрирования. Описаны главным образом наиболее испытанные и ценные методы получения чистых углеводородов в количествах, Т1.ебуемых для указанных целой. [c.398]

    В отношении чистых высокомолекулярных углеводородов были получены важные данные, относящиеся к процессам экстракции растворителями. Исследование кристаллической структуры решеток твердых углеводородов при помощи рентгеновых лучей позволило глубже понять и улучшить процесс дспарафинизации, усовершенствовать анализ и расширить область примеиения твердых парафинов. Данные по смазке и смазочным материалам являются результатом исследования чистых углеводородов на трение и износ, а также изучения поверхностных свойств и влияния молекулярной структуры на вязкость в широкой области температур и давлений. [c.495]

    Исследовательская группа i в университ((те штата Пенсильвания, руководимая Шисслером и позднее Уитмором, синтезировала более 230 чистых углеводородов [64—66, 29—54] и изучила многие их свойства [30]. Синтезированные углеводороды относятся к большому количеству типов и классов от jq до jq, главным образом в области от js До jq. [c.496]

    В течение последних лет в этом же направлении работала группа по синтезу угловодородов при Национальном консультативном комитете США по воздухоплаванию (Кливлэнд, штат Огайо). Под непосредственным руководством Джиббонса, Вайза и Мак-Лафлина группа приготовила [9—И, 12, 16, 17, 23, 24, 55—58] и изучила свойства 150 чистых углеводородов, главным образом дициклических, в области от j до g. [c.496]

    Хотя для большинства рассматриваемых ниже реакций выходы продуктов обычно могут считаться высокими, если к чистоте продукта предъявляются требования с точки зрения обычных стандартов, но для получения продукта наивысшей степени чистоты выходы продукта часто оказываются значительно меньшими. Например, реакция восстановления по Вольфу-Кижнеру обычио дает выход 90—95% мол. углеводорода чистотой выше 90 %. Так какудаление сравнительно малых количеств примесей того жо молекулярного веса мало эффективно, конечный выход чистого углеводорода будет состаилять только 50—60%. [c.497]

    Если возникает необходимость в получении чистых углеводородов высокого молекулярного веса, то обеспечение соответствующими исходными продуктами приобретает большое значение при выборе хорошей схемы синтеза. В области температур кипения бензинов эта проблема имеет меньшее значение, потому что необходимые исходные продукты легко доступны и имеются в продаже многие из них высокой стспени чистоты. Для углеводородов, соответствующих керосиновым и газойлевым фракциям, трудности несколько больше, но для тяжелых фракций и твердого парафина ота задача усложняется очень сильно. Во многих случаях для единственного практически возможного пути синтеза требуется исходный продукт, который трудно приготовить, и поэтому наибольшие усилия при получении углеводорода затрачиваются на синтез такого соединения (см. типичный синтез X). [c.498]

    Чистые углеводороды очеиь чувствительны к образованию перекисей под действием атмосферного кислорода при 25°. При этом легко затрагиваются третичные атомы углерода, а также атомы водорода, связанные с атомами углерода, находящимися в -положении к ненасыщенным связям. Для хранения чистых углеводородов должны применяться специальные меры предосторожности. [c.504]

    Восотановление карбонильной группы по Вольфу-Кижнеру. Превращение альдегидов ы 1 етонов в соответствующие углеводороды по Вольфу-Кижнеру ярляется весьма удобным методом синтеза чистых углеводородов. [c.508]

    Вязкость известных чистых углеводородов была определена в результате исследовательских работ, проведенных Микеска (М1кезка) [65] (который получал чистые углеводороды посредством синтеза) а также ряда других работ, проведенных в рамках Американского нефтяного института. Проблема исследования смазочных масел еще более усложнилась, когда Мебери установил на основании элементарного (не слишком тщательного ) анализа заметный недостаток водорода в смазочных маслах различных нефтей. Теоретическое количество водорода рассчитывалось исходя из формулы строения нормальных алканов С Н2 +2. [c.23]

    Прочие реакции. Обзор и рассмотрение всех реакций, используемых при приготовлении чистых углеводородов и промежуточных веществ для их синтеза, могли бы составить содержание обстоятельного руководства по органической химии. Для получения углеводородов может быть использована почти каждая хорошо известная реакция и многие из менео известных, отвечающих изложенным ранее требованиям. Некоторые из таких реакций описаны в разделе Типичные примеры синтеза углеводородов , помещенном виже. [c.509]

    Сравнительные данные по каталитичеекому и термическому крекингу чистых углеводородов (в интервале температур от 400 до 550° С и давлении, [c.116]

    Изучая реакции чистых углеводородов над катализаторо.м платформинга Гензель и Дональдсон [19] установили, что при давлении 35,2 ати, температуре 459° С, объемной скорости — 2 объема жидкого продукта [c.180]

    Фосфаты кадмия. Фосфат кадмия был также использован как катализатор при заводской полимеризации олефинов [13]. Фосфат кадмия, соответствующий формуле d (POgjg или d (Н2 0 )2, активнее нормального ортофосфата dg (РО )а. Первый из них готовился смешением ортофосфата и ортофосфорной кислоты в количествах, соответствующих формуле d (Р0 )2 + ИдРО . Этот катализатор применялся в гранулированном виде (от 10 до 20 меш), как таковой, или же в смеси с одинаковым объемом гранул пемзы тех же размеров при 200° и давлепии 12 ят для полимеризации фракции G3,—С нефтеперерабатывающих заводов. Катализатор готовился также в виде таблеток размером 3X5 мм при помощи специальной таблетирующей машины с применением 5 % графита как смазочного материала. Истинная кривая разгонки полимера, полученного при 200° и давлении 12 ат из фракции С3—С , не показала никаких площадок, соответствующих чистым углеводородам. Наоборот, полимеры, полученные подобным путем из фракции С при 150°, состояли главным образом из дибутиленов и трибутиленов. [c.200]


Смотреть страницы где упоминается термин Чистые углеводороды: [c.153]    [c.205]    [c.339]    [c.496]    [c.135]    [c.185]    [c.98]    [c.22]   
Смотреть главы в:

Радиационная химия органических соединений -> Чистые углеводороды


Углеводороды нефти (1957) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте