Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взрывы углеводородов

    Вы можете подумать, что углеводороды полезны только одним, они горят или взрываются и поэтому служат только источником тепла, света и энергии. Но это не так. Углеводороды с молекулами еще более крупными, чем у солярового масла, горят так плохо, что применяются в основном для других целей. [c.29]

    Хранилища сжиженных газов могут быть подземными и наземными. В подземных хранилищах в больщинстве случаев хранят сжиженные углеводородные газы под незначительным избыточным давлением (изотермические хранилища) при температуре несколько ниже температуры кипения углеводорода при данном давлении. В этих хранилищах, как правило, хранят большие объемы сжиженных углеводородных газов (пропан, изобутан, пропилен, пропан-бутановые смеси и др.) и ЛВЖ, так как этот способ хранения является более безопасным и в значительной мере позволяет уменьшить масштабы и тяжесть последствий возможных пожаров и взрывов. [c.166]


    В производстве изопренового каучука произошел взрыв изопен-тана на открытой площадке цеха. Загазованность воздуха углеводородами на территории производства создалась при сливе водного слоя из разделителя изопентан-изопреновой фракции и воды. Водный слой, насыщенный углеводородами, без предварительной дегазации на отпарной колонне сливали в канализационный холодец. На разделителе отсутствовал регулятор уровня раздела органического слоя и воды, поэтому в канализацию могли попасть и чистые углеводороды из органического слоя. Таким образом, периодически создавалась дополнительная загазованность углеводородами в системе канализации и на открытой площадке территории вокруг канализационных колодцев. Воспламенение и взрыв углеводородо-воздушной смеси произошли от искрения электропогрузчика, проезжавшего в зоне загазованности. [c.131]

    Чтобы предотвратить взрыв, надо устранить одно из двух условий взрыва искру или взрывоопасную среду. Так как взрывоопасную среду при технологических операциях с легковоспламеняющимися жидкостями устранить сравнительно сложно, обычно идут по пути ликвидации искры, а именно отводят статическое электричество, устраивая заземление технологических трубопроводов и оборудования и устраняя электризацию жидких углеводородов так называемыми антистатическими присадками. [c.152]

    Опасность взрыва или пожара зависит не только от образования зарядов статического электричества, но и от наличия взрывоопасной среды. Жидкие углеводороды с температурой вспышки выше 61 °С не образуют взрывоопасной среды при обычной температуре. Но при подогреве или загрязнении при хранении, особенно при наливе их в резервуар, в котором ранее содержался легковоспламеняющийся нефтепродукт (например, бензин), опасность взрыва возрастает. Чрезвычайно опасны [c.151]

    Взрыв углеводородов в кислородном аппарате может возникнуть в двух случаях а) если произойдет реакция разложения непредельных углеводородов (ацетилена и др.) б) если произойдет реакция взаимодействия углеводородов с кис-  [c.375]

    Четыреххлористый углерод смешивается с жирными веществами так же легко и быстро, как и углеводороды. Его тоже можно применять для выведения пятен и химической чистки, да он часто и применяется для этого. Он дороже петролейного эфира или других углеводородов, используемых для чистки, но зато у него большое преимущество он негорюч и не создает опасности взрыва или пожара. Правда, нужно все время помнить, что он опасен в других отношениях, и опасаться его паров. Если вы пытаетесь с его помощью вывести пятно, пошире откройте окошко. [c.70]


    С другой стороны, парафиновый углеводород всегда необходимо применять в избытке, чтобы избежать взрывов. Например, процесс получения четыреххлористого углерода из метана, разработанный Хассом с сотрудниками [6] (рис. 50) состоит в том, что смесь хлора и метапа в количественном соотношении, исключающем опасность взрыва, протекает через нагретую трубу, по длине которой установлены насадки для подачи хлора. [c.114]

    Утечка жидких углеводородов при эксплуатации трубопроводов и оборудования может привести к серьезным последствиям. Особенно опасна утечка сжиженных углеводородных газов, так как при их воспламенении часто возникает фронт нестационарного быстрого горения или детонации. Условия возникновения детонации еще недостаточно изучены. До недавнего времени считали, что детонировать могут лишь быстрогорящие смеси водород— воздух, водород — кислород смеси непредельных углеводородов с воздухом и кислородом смеси предельных углеводородов с кислородом. В настоящее время считают, что детонировать могут почти все газообразные углеводороды в смеси с воздухом [45]. Для детонации (взрывов) характерны три особенности создается пик давления, примерно в 20 раз превышающий пик давления обычного взрыва при тех же начальных условиях фронт детонации распространяется со сверхзвуковыми скоростями детонация создает прямой удар разрушительной силы, а не гидростатическое давление. [c.111]

    Недостатком окислительного дегидрирования с акцептированием водорода кислородом является необходимость соблюдения особых мер безопасности во избежание взрыва углеводородов и образования в процессе реакции кислородсодержащих соединений. Даже в оптимальных условиях окислительное дегидрирование н-бутиленов сопровождается побочными реакциями в небольших количествах образуются фуран, ацетиленовые и карбонильные соединения, ацетальдегид, акролеин, метакролеин, формальдегид и окислы углерода. [c.186]

    Детонация моторного топлива представляет собой чрезвычайно быстрое разложение (взрыв) углеводородов, которое происходит внезапно при сжатии горючей смеси в цилиндре двигателя. Детонация не дает возможности достигнуть высокой степени сжатия горючей смеси , ведет к излишнему расходу топлива и быстрому износу мотора. Детонационные свойства топлива зависят от строения углеродных цепей в молекулах углеводородов, входящих в его состав. Изомеры с сильно разветвленной цепью детонируют гораздо труднее, чем изомеры с неразветвленной цепью. [c.465]

    Наиболее трудоемкими технологическими операциями в производстве и потреблении жидких углеводородов являются их транспортировка, хранение, налив и слив. Пары жидких углеводородов тяжелее воздуха. При потере части углеводородов в окружающую среду они способны накапливаться в различных, углублениях (траншеях, колодцах, низинах), а при определенном процентном содержании в воздухе образуют взрывоопасные смеси, которые от источника открытого огня или даже незначительной искры взрываются. Особенно опасно образование взрывоопасных концентраций в закрытых помещениях — компрессорных, насосных и т. п. Опыт эксплуатации систем транспортировки и хранения жидких углеводородов показывает, что незнание и даже незначительные нарушения условий безопасности приводят к серьезным последствиям, могут быть причинами аварий, несчастных случаев и убытков, исчисляемых значительными суммами. [c.7]

Рис. 17. Зависимость частоты взрыва углеводородов от высоты падения груза. Рис. 17. <a href="/info/923434">Зависимость частоты</a> взрыва углеводородов от <a href="/info/230666">высоты падения</a> груза.
    Эксплуатация АЗС в городской черте требует обеспечения высокой степени безопасности в связи с близостью к жилым застройкам и промышленным объектам. Необходимо рассмотреть возможные последствия нештатных и аварийных ситуаций, крайней формой которых является взрыв углеводородов. [c.30]

    Взрыв углеводородов в кислородном аппарате может произойти в двух случаях  [c.435]

    Для соблюдения взрывобезопасности в работе очень важно, чтобы в применяемой азотной кислоте не имелось больших количеств двуокиси азота, так как последняя также увлекается пропускаемым углеводородом, отчего смесь обогащается кислородсодержащими соединениями. Поэтому молярное отношение углеводород азотная кислота изменяется в сторону азотокислородных соединении, что. может привести к взрыву [76]. [c.279]

    Давление составляет 50 ат и более. Мерой предосторожности является установка предохранительных вентилей у входа в печь и у входа в сосуд для впрыскивания с целью предотвращения сильного повышения. давления, ведущего к взрыву. Впрыскивание прекращается, если уровень в калиброванном мернике мал (если мерник почти пуст). В зависимости от перерабатываемого углеводорода рабочее давление составляет 20—45 ат, температура 150—220° и время пребывания при благоприятных условиях протекания реакции 15—70 сек. В этих условиях обеспечивается большая объемная производительность. [c.310]


    Комиссия, расследовавшая причины аварии, предложила внести изменения в схему отделения нитрита аммония, исключающие возможность подобных аварий. В частности, были определены допустимые безопасные соотношения окислов азота и аммиака в газах, поступающих на абсорбцию, установлены самопишущие приборы, контролирующие подачу обессоленной воды для промывки крышек скрубберов, организована систематическая промывка крышек скрубберов. Серьезную потенциальную опасность представляют процессы нитрования циклогексана. Известны случаи взрывов нитромассы, полученной в процессе нитрования углеводородов, а также случайно образующихся смесей концентрированной азотной кислоты или меланжа с различными углеводородами. [c.94]

    Фтор — первый элемент группы галоидов. Он чрезвычайно реакционно способен и в этом отношении значительно превосходит своих аналогов хлор и йод. Прямое фторирование углеводородов протекает очень бурно и сопровождается взрыв ом. В настоящее время разработаны достаточно удобные способы синтеза фторуглеродов. [c.152]

    Явление холодного пламени тесно связано с образованием альдегидов и кетонов в окислительных системах. На рис. XIV.10 показан типичный пример взрывных пределов для смеси углеводород—кислород. Область взрыва, за исключением области положительного наклона, напоминает предельную кривую для теплового взрыва. Переход между медленным горением и взрывом характеризуется интенсивным светящимся голубым пламенем, которое появляется после короткого периода индукции и сопровождается взрывом. Периоды индукции не превышают нескольких секунд. [c.416]

    Разрушение начинается с появления в корпусе трещины. Появление трещины влечет за собой, как правило, аварийный выброс жидких углеводородов, который может вызвать взрыв и пожар. Образование трещин зависит от очень большого числа факторов (технологических, конструктивных, климатических и др.), изучение которых имеет весьма важное значение. Ниже дана классификация трещин и рассмотрены меры, принимаемые для их устранения. [c.136]

    Так, взорвался резервуар, содержащий летучий углеводород. Резервуар, эксплуатируемый под азотным дыханием, на короткое время соединялся с атмосферой для измерения уровня вручную. Взрыв произошел при отключении азотного газгольдера на более длительное время, чем это было предусмотрено. [c.137]

    Наилучшим способом очистки резервуаров большого объема является промывка их моющими растворами, подаваемыми специальными моечными машинками струями под напором. Одновременно с промывкой резервуара от тяжелых остатков углеводородов происходит и его дегазация. Это объясняется тем, что во время промывки моющими растворами образуется туман от брызг, который, конденсируясь, эмульгирует пары нефтепродуктов. Кроме того, во время промывки увеличивается естественная вентиляция емкости. Такой способ широко используют для очистки и дегазации резервуаров, емкостей нефтяных танкеров и барж. Однако использование водяных струй высокого давления может привести к образованию опасных зарядов статического электричества. Известны случаи сильных взрывов на трех танкерах водоизмещением более 200 тыс. т. Все взрывы произошли при промывке танков гидромониторными установками причем, перед промывкой была проведена вентиляция танков. [c.141]

    Причиной многих аварий, сопровождающихся взрывами и пожарами, являются разряды статического электричества. Зарегистрированы взрывы от разрядов статического электричества при транспортировании жидких углеводородов по трубопроводам, при операциях смешения, фильтрации, слива, налива, при очистке резервуаров и т. д. При движении жидких углеводородов относительно другого вещества (материала трубы, резервуара) образуются электростатические заряды, которые, накапливаясь, создают электрическое поле и являются причиной электрических разрядов. Взрыв происходит в том случае, если в электрическом поле, которое создается в газообразной воспламеняющейся смеси, происходит разряд, достаточный для подрыва смеси. [c.149]

    На установке по переработке углеводородов при ремонте магистрального паропровода произошел взрыв, вызванный ошибкой руководителя работ. К магистральному паропроводу нужно было сделать врезку. Когда сварщик прорезал паропровод, последовал взрыв. Паропровод использовался для продувки системы налива пропилена в железнодорожные цистерны. Очевидно, пропилен обратным ходом проник в паропровод. Руководитель ремонтных работ недооценил возможность попадания пропилена в паропровод. Следовало бы перед проведением работ отсоединить паропровод от системы налива пропилена или надежно изолировать его от нее. Кроме того, нужно было взять анализ проб на взрывоопасность среды в отглушенном или отключенном паропроводе. [c.190]

    С ростом потребления углеводородов, аммиака, хлора значительно увеличиваются объемы хранилищ сжиженных взрывоопасных и токсичных газов, поэтому, следует принимать меры, обеспечивающие безопасность производства, так как были случаи серьезных аварий в хранилищах сжиженных газов и газгольдерах. Взрывы газовых смесей сопровождались разрушением сосудов. [c.11]

    Случаи взрывов отмечены при образовании взрывоопасных смесей и других углеводородов с хлором. [c.112]

    Через 2 ч после взрыва в пробе азота, взятой из 4-го резервуара, было обнаружено 0,9% водорода, 0,8% метана и 0,1% пропан-бутана. Углеводороды и другие примеси были обнаружены и в пробе, взятой из азотной линии производства фенола и ацетона 2,5% водорода, 0,6% этана, 0,2% пропана, 0,1% бутана и 0,2% пентана. В пробе, взятой из азотной линии производства этилена, было обнаружено 11,5% водорода, 0,8% этана, 0,1% пропана и 0,2% бутана. [c.212]

    Для предупреждения аварий, связанных со взрывом соединении азота, необходимо прежде всего исключить условия образования и накопления в аппаратуре взрывоопасных продуктов и их смесей (аммиака с кислородом, азотной кислоты с органическими продуктами, и т.д.). Необходимо соблюдать осторожность при транспортировке и переработке газовых смесей аммиака с окислами азота. Особые меры предосторожности должны приниматься при нитровании циклогексана азотной кислотой. Характерные аварии при нитровании углеводородов и рекомендации по повышению безопасности этого процесса даны в специальном разделе. [c.94]

    Предотвращение аварий при ремонте резервуаров. Взрывы и пожары могут происходить при очистке, ремонте и демонта-же резервуаров, содержавших ранее нефтепродукты. Взрывоопасные газовоздушные смеси и инициирующие источники возникают при нарушении правил техники безопасности и в отсутствие мер предосторожности во время взрывопожароопасных ремонтных работ. Перед проведением подобных работ необходимо принимать меры, позволяющие привести резервуары в безопасное состояние. Это достигается удалением из них оставшихся нефтепродуктов или созданием таких условий, при которых углеводороды не способны воспламеняться. Одним из распространенных методов подготовки к ремонту резервуаров является их пропарка. Однако очистка пропаркой эффективна лишь для сосудов емкостью не более 30 м . Большие потери тепла из резервуара в окружающую среду не позволяют пропаркой удалить все остатки, если не обеспечена подача очень большого количества пара. В большинстве случаев пропарка крупных резервуаров практически не приемлема. Так, для резервуара емкостью 2000 м требуется около 40 тыс. кг/ч пара. [c.139]

    Детонация моторного топлива представляет собой чрезвычайно быстрое разложение (взрыв) углеводородов, которое происходит внезапно при слсатпи горючей смеси в цилиндре двг1гателя. Детонация ие дает возможности достигнуть высокой стенен ( сжатия горючей смесн , ведет к излишнему расходу топлива и быстг износу мотора. Детонационные свойства топлива завися  [c.469]

    Углеводороды, из которых состоит бензин, летучи — это означает, что они легко испаряются. Запах этих паров вы чувствуете, когда на заправочной станции в бак автомобиля заливают бензин. (Между прочим, бензин, который по-английски называется gasoline , часто называют попросту gas , т. е. газ . Это неудачное название, потому что слово газ означает любое газообразное вещество.) Смесь паров бензина с воздухом может взорваться точно так же, как метан. Поэтому бензин огнеопасен и взрывоопасен. Но внутри автомобильного двигателя взрывы паров бензина делают полезную работу. Эти пары в карбюраторе смещиваются с воздухом, и получившаяся смесь подается в цилиндры. Там она поджигается электрической искрой, которую дает свеча зажигания, и взрывается. Эти взрывы и заставляют двигаться поршни, от которых движение передается колесам. [c.23]

    Чтобы получить как можно больший выход и исключить возможность взрыва, регул,ируют молярное отношение между углеводородом и азотной кислотой не меньше как 5 1, лучше 10 1. Смесь углеводорода и паров азотной кислоты проходит через реактор из хромоникелевую трубку, или, смотря по обстоятельствам, через кварцевую аппаратуру, помещенную в солевую вапяу и нагреваемую там до ужпой температуры. [c.297]

    Особенностью некоторых нефтепродуктов является их способность к образованию тепловой волны (прогретого слоя) при поверхностном горении в резервуарах. В случае горения нефтепродуктов с узкой областью выкипания тепло пожара проникает только в тонкий поверхностный слой. При горении сырых нефтей и жидких углеводородов с широкой областью выкипания низкокнпящие фракции углеводородов уходят с поверхностей и подпитывают пламя, а высококипящие углеводороды устремляются вниз через прогретый слой, образуя нагретый фронт более глубоко расположенных слоев жидких углеводородов. Это явление называют тепловой волной. Тепловая волна растет вследствие подвода тепла и ухода паров, пока не выкипят все более легкие углеводороды или пока она не достигнет водяного или эмульсионного слоя. В последнем случае возникает паровой взрыв с выбросом горящего продукта. [c.143]

    Процессы выпаривания осуществляют для удаления из смесей легкокипящих компонентов. При этом в ряде случаев по мере удаления легкокипящих веществ упариваемая жидкость концентрируется, становится менее термостабильной и более взрывоопасной. Особую осторожность следует соблюдать при выпаривании концентрированных растворов. Так, на установке регенерации адсорбента, насыщенного тяжелыми углеводородами (продуктами осмоления гомологов ацетилена), произошел взрыв. Выпаривание проводили в выпарном аппарате периодического действия, снабженном змеевиками. Взрыв произошел в результате излишней отпаркн ксилола из упариваемого раствора, что привело к оголению греющей поверхности змеевиков аппарата и перегреву сконцентрированных нестабильных углеводородов ацетиленового р да. [c.138]

    Взрыв произощел, как было указано выше, спустя несколько минут после подачи азота в резервуары с жидким хлором и явился результатом взаимодействия хлора с углеводородами, а возможно и с аммиачными соединениями, которыми в сильной степени был загрязнен азот. Такой процесс протекает с очень боль- [c.211]

    Полагают, что взрыв был вызван накопившимися в низкотемпературном блоке органическими веществами и окислами азота, образовавшими с непредельными углеводородами нитросоединения сложного состава, разложение которых привело к взрьгву. [c.23]

    Алюмп нийалкилы с числом атомов углерода в радикале не более четырех представляют собой бесцветные жидкости, которые могут самовоспламеняться на воздухе алюминийалкилы с большим числом атомов углерода также окисляются на воздухе, но значительно медленнее. Алюминийарилы и их производные — в основном кристаллические вещества. Большинство алюминийалкилов при растворении взаимодействуют с растворителями. Алюминийарилы хорошо растворяются в ароматических углеводородах и фактически не растворяются в парафинах. Алюминийалкилы растворяются в хлористом этиле и четыреххлористом углероде. Они бурно со взрывом реагируют с водой и четыреххлористым углеродом. [c.148]

    Крупная авария произошла в хранилище жидкого хлора. В систему сжатого азота, применяемого для передавливания жидкого ллора, проникли ацетилен и другие углеводороды из технологического оборудования. При подаче такого азота в хлорные танки температура в последних повысилась и возросло давление, что было вызвано взаимодействием хлора с ацетиленом. Взрывом были разрушены два хлорных танка, в которых хранилось около 100 т жидкого хлора. [c.188]


Смотреть страницы где упоминается термин Взрывы углеводородов: [c.235]    [c.113]    [c.411]    [c.122]    [c.131]    [c.131]    [c.287]    [c.23]   
Катализ и ингибирование химических реакций (1966) -- [ c.450 , c.471 ]




ПОИСК





Смотрите так же термины и статьи:

Взрыв



© 2025 chem21.info Реклама на сайте