Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бензол синтез из ацетилена

    Используя разнообразные методы разделения исходных материалов, а также наиболее современные процессы их переработки, получают важнейшие соединения, являющиеся непосредственным сырьем органического синтеза синтез-газ (смесь СО и Н2) насыщенные алифатические углеводороды (от метана до пентанов) индивидуальные моноолефины (от С2 и выше) и их смеси диолефины бутадиен, изопрен и др. ацетилен ароматические углеводороды бензол, толуол, ксилолы и пр. [c.161]


    Производство низших олефинов пиролизом различного углеводородного сырья характеризуется одновременным получением большой гаммы ценных непредельных углеводородов, диеновых, ароматических, производных ацетилена. Эти углеводороды содержатся в соответствующих фракциях в количествах, достаточных для их экономически обоснованного выделения в чистом виде с целью получения товарной продукции для органического синтеза. К таким углеводородам относятся ацетилен, аллен, метилацетилен, цикло- и дициклопентадиен, бензол, нафталин и др. Кроме того, низкая стоимость, высокая концентрация целевых продуктов, малое содержание сероорганических и практически отсутствие других гетероорганических соединений создают хорошие технологические и экономические предпосылки для переработки побочных продуктов пиролиза. Себестоимость вырабатываемых из пиролизного сырья продуктов (например, дициклопентадиена, бензола) на 15—25% ниже себестоимости. аналогичных продуктов, полученных традиционными процессами [c.27]

    Синтезы. 1. Некоторые алкильные гомологи бензола образуются при полимеризации алкилированных ацетиленов, причем обычно эта конденсация протекает даже легче, чем конденсация самого ацетилена  [c.484]

    Переработкой нефтегазового сырья для получения целевых (конечных) продуктов или сырья для других химических производств занимается нефтехимическая промышленность. Она производит в больших количествах прежде всего углеводородное сырье простейшие парафиновые и этиленовые углеводороды, ацетилен (из метана), циклогексан, бензол. Из этого сырья получают синтетическое горючее, мономеры для пластиков, синтетических каучуков, фенол, ацетон, синтетические спирты, синтетический глицерин, кислоты, хлорпроизводные, нитропарафины. Многие из этих промышленных синтезов будут рассмотрены в дальнейшем. [c.272]

    Другие реакции. Из-других реакций галоидпроизводных имеют большое значение следующие упомянутое ранее отщепление от них галоидоводородов с образованием олефинов и ацетиленов (стр. 67 и 82), синтез гомологов бензола при алкилировании по реакции Фриделя — Крафтса (стр. 111), синтез парафинов по реакции Вюрца (стр. 45). [c.147]

    Простейший способ синтеза стирола — взаимодействие бензола с ацетиленом  [c.95]

    Такой синтез бензола был впервые осуществлен М. Вертело. Н. Д. Зелинский и Б. А. Казанский осуществили эту реакцию, пропуская ацетилен над нагретым активированным углем. [c.109]


    Исходные вещества — простые углеводороды метан, этилен, пропилен, бутилен, ацетилен, бензол, толуол и др., являющиеся основным сырьем органического синтеза, получаются при химической переработке газообразных, жидких и твердых видов топлива. В настоящее время многие из перечисленных исходных веществ выпускаются десятками и сотнями тысяч тонн. [c.160]

    Эта реакция открывает новый путь синтеза важных полиамидных смол не из фенола или бензола (об этом последнем методе см. ниже), а из ацетилена и формальдегида. Так как конденсация спиртов с ацетиленом в присутствии КОН в виниловые эфиры проходит при 150 — 200 , то естественно, что в случае спиртов, кипящих ниже этой температуры, для проведения реакции пришлось прибегнуть к повышенным давлениям. Это явилось первым примером проведения реакций с ацетиленом под повышенным давлением [02]. [c.487]

    Установлено, что оптимальными условиями для синтеза бензола являются температура 650° С и объемная скорость ацетилена 0,2 л мин. В результате реакции полимеризации ацетилена в указанных условиях получается продукт, состоящий в основном из бензола и в меньших количествах из нафталина и других ароматических углеводородов. Выход жидкого конденсата составляет 50—56%, бензола—35—40%, в пересчете на конденсат или 20— 22%—в пересчете на ацетилен, нафталина—10—12%, в пересчете на продукт, оставшийся после отгонки бензола. [c.142]

    Согласно данным Реппе [1], тетрагидрофуран является более подходящим растворителем при проведении полимеризации, чем бензол или ацетон. В связи с возможностью изотопного об-мена водорода с ацетиленом-Нг в этом случае целесообразно применять дейтерированный растворитель. Однако из-за трудностей получения больших количеств тетрагидрофурана-На в описанном синтезе используется пропанон-2-Нб- [c.213]

    Исходные вещества — простые углеводороды метан, этилен, пропилен, ацетилен, бензол, толуол и другие, являющиеся основным сырьем органического синтеза, получаются при переработке различных видов топлива. Многие из этих углеводородов выпускаются промышленностью десятками и сотнями тысяч тонн.  [c.482]

    Такая расплывчатость определения может повести к ряцу недоразумений. Мы попытаемся поэтому по возможности сузить понятие конденсации и будем называть этим именем лишь такого рода химические процессы, отличием которых служит появление в продукте новой связи между двумя углеродными атомами, каковой связи не существовало в исходном (или исходных) соединении. Возникновение новой связи углерода с азотом, кислородом, серой и т. д. или возникновение связи углерода с углеродом через азот, кислород и пр. не будут подходить под это определение. Короче говоря, конденсация непременно сопровождается изменением в продукте углеродного скелета исходного соединения. При этом реакция конденсации происходит при отщеплении из реагирующего вещества (веществ) элементов, образующих (обыкновенно легкие) частицы Hj. О.,, HgO, H l и пр. Сказанное выше определяет различие конденсации от таких процессов, как некоторые виды окисления с изменением скелета нафталин во фталевую кислоту, реакции присоединения (циангидриновый синтез), полимеризации (ацетилен в бензол). [c.404]

    За три года до синтеза салициловой кислоты английский химик У. Перкин получил первый искусственный анилиновый краситель — мовеин. В это же время во Франции М. Бертло занимался систематическими поисками возможности проведения других органических синтезов. Из неорганических компонентов он получил, например, муравьиную кислоту, ацетилен, бензол. В 1860 г. Бертло опубликовал двухтомник Органическая химия, основанная на синтезе , а четырьмя годами позже он дополнил ее Лекциями по общим методам органического синтеза . [c.154]

    Исходные вещества — простые углеводороды метан, этилен, пропилен, бутилен, ацетилен, бензол, толуол и другие, являющиеся основным сырьем органического синтеза, получаются при химической переработке газообразных, жидких и твердых видов топлива. Раньше основным источником сырья органического синтеза была смола коксования и полукоксования. Широко использовалось сырье растительного и животного происхождения. В последние годы преобладающее значение приобрели жидкие углеводороды нефти, природный и попутный газы, а также газы нефтепереработки. В настоящее время многие из перечисленных исходных веществ выпускаются десятками и сотнями тысяч тонн. [c.494]

    При абсорбции ацетилена жидким аммиаком газы пиролиза после очистки от сажи предварительно компримируются до давления 10 ат и последовательно очищаются от СО2 (аммиаком и щелочью), от нафталина, бензола и всех углеводородов выше Сг (керосином особой чистоты). Затем под давлением 8-ат ацетилен поглощается при температуре минус 38 — минус 46 С аммиаком. Остаточный синтез-газ имеет следующий состав (в объемн. %)  [c.182]

    Синтез ацетилена и получение при его пиролизе бензола, а также других ароматических углеводородов (например, стирола, нафталина) стали экспериментальным обоснованием [10—18] ацетиленовой теории Бертло [14]. Основные ее положения заключались в следующем 1) ароматические углеводороды каменноугольной смолы являются продуктами полимеризации ацетилена 2) сам ацетилен может образоваться в результате распада других углеводородов, например, метана, этана и этилена. Несколько ранее Бертло сделал важное наблюдение [19, 20] при [c.64]


    Правило 4 (стр. 744) позволяет отнести к категории 4+ 2- 6 многие реакции тримеризации. Однако детальный механизм этих реакций изучен очень мало. Ни в одном случае не был установлен характер конечного замыкания кольца. В качестве примера можно привести изящный синтез производных бензола из ацетиленов, который протекает под каталитическим воздействием бис (трифенилфосфин) дикарбонилникеля [52], тетрагидрофураната трифенилхрома [53] или дикобальтоктакарбонила [54] в мягких условиях [c.454]

    Известен и ряд других реакций, в которых циклооктатетраен реагирует в одной из трех форм Л, Б и 5. Результаты описанного выше гидрирования соответствуют структуре А распад на бензол и ацетилен — структуре Б окисление в /г-бензолдикарбоновую кислоту — структуре В. Сюда можно добавить окисление циклооктатетраена ЫаОС1, приводящее к п-бензолдиальдегиду. Хлорирование посредством ЗОгСЬ отвечает структуре Б. Многочисленные реакции диенового синтеза с разнообразными диенофилами (малеиновым ангидридом, тетрацианэтиленом и др.) также идут в соответствии с формой Б. Например  [c.538]

    Французский химик Пьер Эжен Марселей БертАо (1827—1907) в 50-е годы XIX в. начал систематическую разработку синтеза органических соединений и достиг больших успехов. Он синтезировал, в частности, такие хорошо известные и важные соединения, как метиловый и этиловый спирты, метан, бензол, ацетилен. Бертло - нарушил границу между неорганической и органической химией, покончив с пресловутым запретом . В дальнейшем такое нарушение границ стало обычным. [c.71]

    Значительное место отведено расчету равновесий реакций синтеза важнейших мономеров и полупродуктов, являюш,ихся исходным сырьем для производства различных высокомолекулярных продуктов и пластиков в их числе ацетилен, этилен, пропилен, дивинил, изопрен ароматические углеводороды — бензол, толуол, ксилолы и другие алкилбен-золы — стирол, винилнафталин альдегиды — кетоны, кислоты, спирты, некоторые азотсодержащие соединения и др. [c.5]

    Опыты П. Сабатье и его сотрудника Сандэрана возбуждают заслуженное внимание и представляют наиболее интересный пример неорганического синтеза нефти. Смесь непредельного углеводорода, с водородом подвергается (в присутствии катализатора — никеля) нагреванию нри температуре не свыше 180°. Происходит процесс гидрогенизации ненасыщенных углеводородов. В результате получается светло-желтая жидкость удельного веса 0,790, состоящая из предельных углеводородов и напоминающая по своим свойствам пенсильванскую нефть. При несколько измененных условиях опыта получаются и другие результаты так, если пропускать ацетилен без водорода над никелем при температуре 200°С, получается вещество, богатое ароматическими углеводородами. При вторичном пропускании этого последнего над никелем получается смесь нафтенов, т. е. нефть типа бакинской. Здесь, очевидно, мы имеем процесс полимеризации и образования под влиянием катализаторов циклических соединений. Вертело доказал, что полимеризация ацетилена (С2Н2) дает бензол (СаНе) при температуре размягчения стекла. Далее в литературе встречаются указания, что углеводороды могут получаться и при других реакциях. Например, еще в 1863 г. была известна возможность непосредственного получения ацетилена при пропускании водорода между угольными концами вольтовой дуги, но тогда на это не обратили должного внимания. Еще Вертело указал, что щелочные металлы, реагируя с СО2, образуют карбиды, или ацетиды и кислород, который потом уходит из сферы реа- [c.302]

    Первые синтезы органических веществ удалось провести немецкому химику Ф. Вёлеру. В 1824 г. он наблюдал образование щавелевой кислоты из дициана, а в 1828 г.— образование мочевины из цианата аммония. Были разработаны методы для элементного анализа органических соединений Ж- Дюма разработал метод количественного определения азота, а Ю. Либих — метод определения углерода и водорода в органических соединениях. В середине XIX в. быстро расцвел органический синтез. В 1845 г. Г. Кольбе синтезировал уксусную кислоту, в 50-е годы М. Бертло из простых неорганических веществ синтезировал муравьиную кислоту, этиловый спирт, ацетилен, бензол, метан, а из глицерина и жирных кислот получил жиры. [c.10]

    Нефтехимическая промышленность производит прежде всего углеводородное сырье, служащее базой для дальнейшей переработки это простейшие алканы и алкены (от С, до Сг,), ацетилен, циклогексан, бензол. Из этого сырья получают синтетическое горючее, мономеры для синтетических каучуков, пластмасс, синтетических волокон, такие химические продукты, как фенол, ацетон, синтетические спирты, синтетический глицерин, кислоты, нитро-парафииы, галогенопроизводные. Со многими из этих промышленных синтезов мы познакомимся в следующих главах, пока же остановимся только на тех превращениях, которые не выходят за пределы класса углеводородов. [c.137]

    Их синтезируют также взаимод. бензола или его замещенных с нитренами или термич. перегруппировкой азаква-дрицикленов, получаемых фотоизомеризацией аддуктов диенового синтеза пирролов с ацетиленами  [c.47]

    Препаративных методов синтеза М. известно более пятидесяти напр., взаимод. NH3 с O lj, OS или СО, ацетиленом или бензолом на Pt окислением цианида калия К.МПО4 Na lO нагреванием СО в медноаммиачном р-ре под давлением гидролизом РЬ(СМ)г кипящей водой и др. [c.145]

    Еще одним возможным источником получения ароматики, хотя и не связанным непосредственно с нефтью, является ацетилен. Классический синтез Бертло бензола из ацетилена обще- [c.17]

    Основой современного органического синтеза являют-я поэтому простейшие углеводороды, такие, как метан, тан, пропан, бутаны, пентаны, этилен, пропилен, бутиле-1Ы, бутадиен, изопрен, ацетилен, бензол, толуол, ксилолы, сумол, циклоалканы, нафталин, простейшие спирты, фено-1Ы, альдегиды, кетоны, карбоновые кислоты, амины — ме-анол, этанол, ацетальдегид, ацетон, фенол, крезолы, ук-усная кислота, анилин и др [c.749]

    Наряду с традиционной технологией получают развитие новые направления синтеза метанола. Это каталитическое гидрирование оксидов углерода с отводом тепла из зоны катализа жидкплш углеводородами, или трехфазный синтез метанола, парциальное окисление углеводородов, получение метанола топливного назначения и интегральные схемы, предусматривающие комплексную переработку исходного сырья метанол — аммиак, ацетилен — метанол, метанол уксусная кислота — бензол и др. [c.193]

    Производные фурана вступают в диеновый синтез с большим числом диенофилов, содержащих двойную или тройную связь. В результате размыкания кислородно о мостика в ад-дуктах происходит построение шестичленного карбоцикла [1093]. Так, ароматизация при действии кислот аддуктов (3i), полученных реакцией замещенных фуранов (30) с малеиновым ангидридом, использована для синтеза замещенных фталевых ангидридов (32), гидрирование одной двойной связи в аддуктах с дизамещенными ацетиленами (34) или с дегидробензолом, (33) и последующая ароматизация под действием кислоты — для синтеза производных бензола и нафталина соответственно Обработка кислотой аддуктов фуранов с ацетиленовыми диенофилами служит методом синтеза фенолов и нафтолов так, фенол (35) получают из аддукта (34), образовавшегося при реакции фурана (30) с диметилацетилендикарбоксилатом (36). Аддукт (33 R=H) фурана с дегидробензолом в метанольном растворе НС1 количественно превращается в нафтол-1. Ретродиено-вый, термический распад аддуктов применяется для синтеза труднодоступных 3,4-дизамещенных фуранов, например эфира дикарбоновой-3,4 кислоты (38) из аддукта (34), [c.485]

    Fis her и Pi hler исследовали синтез ацетилена из метана с точки зрения равновесия с бензолом. При атмосферном давлении, при времени контактирования, равном 0,016 сек., к при 1300° из 1 метана было получено 60 г бензола и 75 г ацетилена. Выше 1400° получался только ацетилен. Из таза коксовых печей, содержащего 25% метана при времени контактирования, равном 0,004 сек., и при 1600° была достигнута конверсия метана в ацетилен на 75%. Оказалось, что выход бензола из этого газа очень незначителен как при этой температуре, так и при более низкой. При пониженном давлении (50—70 мм) выход ацетилена равнялся 70—80%, а выход бензола падал по мере уменьшения давления. Полученные результаты соответствовали вычисленному равновесию для реакции [c.167]

    Тот факт, что ацетилен путем термической обработки может быть превращен в ароматические уг еводороды, был известен уже давно и по существу представляет собой класс 1ческий синтез бензола и его гомологов. Наиболее благоприятные температуры для такого превращения лежат в пределах от 600 до 700°. При более высокой температуре реакция конденсации заменяется реакцией разложения ацетилена на уголь и водород, а также реакциями гидро- [c.200]

    Реакции, приведенные в табл. 2-18, обеспечивают, как правило, эффективное использование изотопа, достаточную простоту синтетических приемов и дают возможность при меньшей затрате времени получать препараты более высокой удельной активности, чем другие реакции. Например, продолжительность технологического процесса синтеза бензола-1—бС путем тримери-зации ацетилена-1,2С в 3—4 раза меньше, чем при получении бензола-1С 4 при этом выход равномерно меченного препарата в расчете на исходный ВаС Оз оказывается в 1,5 раза выше. Удельная активность бензола-1—6С в 3—4 раза превышает удельную активность бензола-I . Аллиловый спирт-2,ЗС 4 готовят гидратацией пропаргилового спирта, получаемого конденсацией формальдегида с меченым ацетиленом. Этот путь синтеза менее длителен и включает меньшее число стадий, чем способы получения аллилового спирта через пропилен или глицерин. Однако неопределенность положения метки в молекулах лишает изотопные синтезы на основе карбида бария универсального значения. [c.679]

    Тропилиден, используемый в этом синтезе, можно получить по инициируемой светом реакции диазометана с бензолом или, что удобнее, путем термической перегруппировки продукта диенового синтеза циклопентадиена с ацетиленом [c.330]

    Сырьевая база для полученпя мономеров, используемых для синтеза полиамидов типа анид, найлон 6,6, шире, чем для производства капролактама. Кроме фенола, бензола и циклогек-сапа, которые дгогут быть использованы для получения как капролактама, так и адипиновой кислоты и гексаметилендиамина, для производства полпамида анид в качестве исходных веш еств мог "г быть применены также фурфурол и ацетилен. [c.50]

    Исходным сырьем при синтезе бризантных ВВ в соответствии с их химической природой являются ароматические углеводороды и фенолы (бензол, толуол, ксилол, нафталин, фенол, резорцин, крезол), алифатические углеводороды (метан, этан), непредельные Углеводороды (ацетилен), алифатические спирты (глицерин, гликоль, пентаэритрит), альдегиды, углевоДы (целлюлоза), ароматические и алифатические амины (диметиланилин, гексаметилентет-рамин, атилендиамин, гуанидин и др.), аминоспирты (диэтанол-амин) и др. [c.12]

    Большой цикл исследований пиролиза этилена был проведен в 1920-е годы [204—207]. Среди жидких продуктов пиролиза были обнаружены кроме углеводородов олефинового ряда бензол, толуол, л -ксилол и ароматические углеводороды с кондеисирован-ными кольцами. Ацетилен при этом найден не был. Выяснению механизма образования ароматических углеводородов в значитель- ной степени способствовали чисто теоретические изыскания. Так, например, были вычислены [205] свободные энергии различных углеводородов. Френсис и Клейншмидт [207] пришли к выводу, что при полимеризации низших олефинов образуются в больших количествах бензол, нафталин, антрацен и стирол. Они нашли в газах пропилен,, бутилен, амилен и бутадиен. И тем не менее механизм оставался неясным вплоть до 1928 г., когда О. Дильс и К. Альдер открыли свой знаменитый диеновый синтез. [c.88]


Смотреть страницы где упоминается термин Бензол синтез из ацетилена: [c.575]    [c.247]    [c.8]    [c.84]    [c.39]    [c.247]    [c.177]    [c.462]    [c.270]    [c.171]    [c.500]   
История химии (1975) -- [ c.331 ]

История химии (1966) -- [ c.323 ]




ПОИСК





Смотрите так же термины и статьи:

Бензол из ацетилена

Бензол синтеза

Бензол, реакции присоединения синтез из ацетилена

Бертело синтез бензола из ацетилена

Вертело синтез бензола из ацетилена



© 2024 chem21.info Реклама на сайте