Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление аммиака металлов

    Окисление аммиака Металлы и пористые материалы 1453 [c.160]

    Если сжигать смеси низших углеводородов, например природный газ, с воздухом в присутств-ии аммиака, над катализаторами, применяемыми для окисления аммиака в окислы азота (платина или металлы платиновой группы), то образуется синильная кислота по следующему суммарному уравнению  [c.508]

    Иногда пользуются ситами из сплава платины с 5—10% родия при этом потери катализатора почти в 6 раз больше, чем при окислении аммиака, а активность катализатора падает значительно быстрее из-за отложений углерода, кристаллизации металла и образования карбидов платины. [c.309]


    Реакции (а) — (г) практически необратимы и поэтому направление процесса определяется соотношением скоростей реакций. В отсутствие катализаторов прн высоких температурах (выше 900°С) окисление аммиака идет в основном с образованием азота по реакции (в). Для производства азотной кислоты необходимо наиболее полное окисление аммиака по реакции (а), поэтому применяют катализаторы, избирательно ускоряющие ее. На практике степень окисления аммиака кислородом воздуха до оксида азота, т. е. селективность процесса, достигает 98%. В качестве избирательных катализаторов, ускоряющих процесс окисления аммиака до оксида азота, могут служить платина и ее сплавы с металлами платиновой группы, оксиды железа, марганца, кобальта и др. До [c.100]

    Сплавы платины с некоторыми металлами платиновой группы (Pd, Rh) являются непревзойденными катализаторами для избирательного окисления аммиака в окись азота [177—178]. Их используют в виде сеток разных размеров, благодаря чему создается большая поверхность катализатора в конверторе при относительно малом расходе платины. Обычно применяют сетки с диаметром проволоки 0,045—0,09 мм. Площадь сетки, не занятая проволокой, составляет - 50—60% общей площади. При изготовлении сеток из проволоки другого диаметра число сплетений изменяют таки.м [c.160]

    Оксид азота может быть получен действием восстановителей, например, HoS, HI и других, на нитриты в кислом растворе восстановлением умеренно концентрированной азотной кислоты металлами окислением аммиака непосредственным синтезом из азота и кислорода воздуха. [c.532]

    Широкое применение платиновые металлы находят в качестве катализаторов. Так, способность платины сорбировать кислород позволяет использовать ее в качестве катализатора процессов окисления (контактный способ производства серной кислоты, каталитическое окисление аммиака и т. п.). Сродство палладия к водороду обеспечивает его каталитическую активность при разнообразных реакциях гидрирования. Значительные количества платины и палладия используются для изготовления ювелирных изделий. Платиновые металлы наряду с золотом и серебром служат в качестве валютных активов. [c.427]

    Эта реакция также необратимая. Платина участвует в реакции в качестве катализатора. Она раскаляется за счет выделяющейся при реакции теплоты. Катализаторами для каталитического окисления аммиака, кроме платины, могут служить окислы некоторых металлов, например железа и хрома, [c.46]


    На заводских установках очищенный от нежелательных примесей воздух смешивают с чистым газообразным аммиаком. Так как окисление аммиака на катализаторе из платинородиевых сплавов протекает очень быстро, катализатор применяют в виде сеток, сплетенных из тонких нитей. Пакет из нескольких сеток помещают горизонтально в контактном аппарате (рис. 22). Применяют также катализаторы, состоящие только из одной платинородиевой сетки и окислов металлов (железа и других). Благодаря этому в несколько раз уменьшается количество драгоценных металлов, используемых в качестве катализатора в азотнокислых цехах. [c.65]

    В качестве катализаторов щироко используются металлы, такие как никель, платина, палладий, медь и др. Эти металлы используют в реакциях гидрирования и дегидрирования, платину применяют также в реакциях каталитического окисления, например, при окислении аммиака до оксида азота (II). Очень хорошими катализаторами являются кристаллические алюмосиликаты — цеолиты, АЬОз, АЬ(804)з. Эти вещества образуют кристаллогидратные соединения с водой, поэтому их используют как катализаторы в реакциях гидратации и дегидратации. [c.46]

    Реакция окисления аммиака начинается на Р(1 при 100 °С на Р1 прн 195 °С и иа ре при 230 С. На оксидах металлов температура начала реакции колеблется в широких пределах [35]. [c.40]

    Высокая стоимость и дефицит металлов платиновой группы обусловили поиск неплатиновых, оксидных катализаторов (НК) окисления аммиака. [c.45]

    При взаимодействии 60 г металла П группы периодической системы с азотом, образуется нитрид, при гидролизе которого получается гидроксид соответствующего металла и аммиак. При каталитическом окислении аммиака выделяется 21,96 л оксида азота (П) с выходом 98 %. Определите, какой исходный металл был взят. [c.232]

    Многие переходные металлы и их комплексы обладают каталитической активностью и широко применяются в промышленных каталитических системах, например, оксид ванадия(У) при окислении диоксида серы для получения серной кислоты, мелкодисперсное железо, оксид железа(Ш) - при синтезе аммиака. Особенно активны в этом отношении переходные элементы второго и третьего переходных рядов и, в частности, платиновые металлы. Так, мелкодисперсная платина и ее сплавы используются при окислении аммиака, металлорганические соединения родия и иридия - в разнообразных реакциях органического синтеза. В гл. 11 мы отмечали, что среди разнообразных механизмов действия этих и других катализаторов можно выделить несколько стадий, присущих каждому каталитическому процессу. Попытаемся теперь проследить за действием металлокомплексного катализатора на основных стадиях процесса  [c.373]

    Порядок проведения работы. В лаборатории для окисления аммиака используют различные катализаторы. С наибольшей скоростью окисление аммиака протекает на платине, поэтому ее использование в лаборатории в виде сеток или платинированного асбеста дает наилучшие результаты. Большее распространение в учебных лабораториях получили железохромовый и ванадиевый катализаторы, которые изготавливаются на основе оксидов этих металлов. Катализатором заполняют кварцевую или фарфоровую трубку, помещенную в печь. Тип печи и ее расположение описаны в работе 6 (с. 26). Образовавшиеся нитрозные газы поглощают водой с несколькими каплями пероксида водорода. [c.38]

    Сплавы платины с некоторыми металлами платиновой группы (Р(1, НИ) являются непревзойденными катализаторами для избирательного окисления аммиака в оксид азота [14]. Их используют в виде сеток разных размеров, благодаря чему создается большая поверхность катализатора в конвекторе при относительно малом расходе платины. Обычно применяют сетки с диаметром проволоки 0,045—0,09 мм. [c.159]

    Полученную пастообразную или порошкообразную массу прессуют, формуют, гранулируют, рассеивают на фракции и получают контактную массу в виде шариков, таблеток, зерен или гранул. Иногда катализатор готовят в виде тончайших сеток, изготовленных из сплавов различных металлов (платиново-родиевые сетки для окисления аммиака). Для проведения процессов во взвешенном слое катализатора контактную массу изготавливают и применяют в виде мелких зерен или шариков диаметром от 0,5 до 3 мм. [c.179]

    Принципиальная схема контактного аппарата с катализатором в виде сеток показана на рис. 47. В корпусе аппарата 1 горизонтально укреплены одна над другой несколько сеток 2 (пакет сеток), изготовленных из активного для данной реакции металла или сплава. Время соприкосновения газа с поверхностью сеток находится в пределах тысячные-десятитысячные доли секунды. Такие аппараты просты по устройству и высокопроизводительны. Они применяются для окисления аммиака на платино-родиевых сетках, для синтеза ацетона из изопропилового спирта на серебряных сетках, для окисления этанол на медных или платиново-серебряных сетках и т. д. Эти же процессы с применением других менее активных, но более дешевых катализаторов проводят в аппаратах с фильтрующим или взвешенным слоем катализатора. [c.181]


    Многие реакции окисления катализируются металлами или окислами металлов. Некоторые из этих реакций были исследованы очень подробно, так как на них основаны важные промышленные процессы, а другие позволили к тому же получить сведения о механизме действия катализаторов окисления [118]. К первой группе относятся окисления аммиака в окись азота и, следовательно, в азотную кислоту [119], окисление аммиака в закись азота [120], двуокиси серы в трехокись [121], окисление окиси углерода в углекислоту [122] и различных углеводородов в более ценные кислородсодержащие продукты ]118]. Вторая группа включает окисление аммиака и двуокиси углерода на окисных катализаторах, этилена [c.320]

    ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЧИСТЫХ ОКИСЛОВ МЕТАЛЛОВ НА ОКИСЛЕНИЕ АММИАКА ПРИ ПОВЫШЕННЫХ ДАВЛЕНИЯХ Н. П. К у р и н и М. С. 3 а X а р о в [c.234]

    Приведенные здесь факты показывают, что в процессе окисления аммиака а окисных катализаторах большую роль играет кислород кристаллической решетки окисла поверхности катализатора. Причем в процессе катализа происходит поочередное восстановление расположенных на поверхности высших окислов до низших или даже до металла, и окис [c.235]

    Окисление аммиака Металлическая платина или сплавы с металлами платиновой группы 617 [c.162]

    Окисление аммиака Сплавляют 70 частей кобальта (очищенного) с 3,5—5 частями углекислого кальция и 1,7—3,5 частями фтористого кальция, металл очищают от шлака и превращают в закись-окись кобальта, ее измельчают (просеивают через сито 100 меш), смешивают с 17—19% (по весу) угля и смесь с раствором сахара превращают в густую пасту 139 [c.162]

    Оксид азота (II) N0 (монооксид азота) Каталитическое окисление аммиака 4 КНз + 5О2 4К0 + 6Н2О Взаимодействие разбавленной азотной кислоты с малоактивными металлами например ЗСи + 8НКОз = ЗСи(КОз)2 + 2М0 + 4Н2О [c.344]

    При наличии большого числа побочных реакций катализатор, применяемый для окисления аммиака в производстве азотной кислоты, должен быть селективным относительно реакции (1.20). Установлено, что активность к реакции окисления аммнака проявляет подавляющее большинство металлов, их сплавов и соедииений, ио высокий выход оксида азота (П)—более 90% — обеспечивают при температурах 600—1000 °С очеиь немногие из иих, в основном металлы платиновой группы. - [c.41]

    Контактные аппараты поверхностного контак-т а применяются реже, чем аппараты с фильтрующим или взвешенным слоем катализатора. При поверхностном контакте активная поверхность катализатора невелика. Поэтому aппaJ)aты такого типа целесообразно применять лишь для быстрых экзотермических реакций на высокоактивном катализаторе, обеспечивающем выход, близкий к теоретическому. При этих условиях в контактном аппарате не требуется размещать большие количества катализатора. Принципиальная схема контактного аппарата с катализатором в виде сеток показана на рис. 102. В корпусе аппарата горизонтально укреплены одна над другой несколько сеток (пакет сеток), изготовленных из активного для данной реакции металла или сплава. Подогрев газа до температуры зажигания производится главным образом в самом аппарате за счет теплоты излучения раскаленных сеток. Время соприкосновения газа с поверхностью сеток составляет тысячные — десятитысячные доли секунды. Такие аппараты просты по устройству и высокопроизводительны. Они применяются для окисления аммиака на платино-палладиево-родиевых сетках, для синтеза ацетона из изопропилового спирта на серебряных сетках, для конверсии метанола на медных или серебряных сетках и т. п. Эти же процессы с применением других менее активных, но более дешевых катализаторов проводят в аппаратах с фильтрующим или взвешенным слоем катализатора. В некоторых случаях, чтобы совместить катализ и нагрев газовой смеси, катализатор наносят на стенки теплообменных труб. [c.236]

    Единственный хороший метод синтеза гидразина был предложен Рашигом[1]. Он состоит в окислении аммиака гипохлоритом натрия в присутствии таких веществ, как клей или желатина, назначение которых состоит в том, чтобы повысить вязкость раствора и подавить адсорбцией разрушающее действие следов ионов металлов на образовавшийся гидразин [2]. Желательно брать дестиллирован-ную воду. При приготовлении раствора окислителя необходима особая осторожность, так как свободный хлор, если он присутствует в растворе гипохлорита натрия, окисляет аммиак до азота. Раствор гипохлорита натрия должен иметь отчетливую щелочную реакцию .  [c.90]

    Диоксид щелочного металла получают путем быстрого окисления растворенного в жидком аммиаке металла (—50 °С) под действием необходимого для реакции количества кислорода. Для реакции можио использовать тот же реакционный сосуд, какой применяют при получении КО2 (см. рнс. 310). При медленном окислении конечный продукт загрязнен значительными количествами гидроксида и амида, которые образуются при аммонолизе промежуточного моноксида дикалия (соответственно моноксидов дирубидия, дицезия). [c.1031]

    Если в О.-в. к. участвуют переходные металлы, молекулы субстрата образуют с катализатором комплексы, что обеспечивает возможность одноврем. переноса неск. электронов. Напр., молекула азота в координац. сфере металла превращ. в гидразин (перенос четырех электронов) или аммиак (перенос шести электронов), окись углерода — в метанол, ацетилен — в этан или метан. О.-в. к. примен. в пром-стн при окислении двуокиси серы в трехокись в проиэ-ве серной к-о ы, окислении аммиака в окись азога [c.398]

    Но у адсорбционных катализаторов оказалось одно свойство, особенно незаменимое в тех случаях, когда в качестве активного вещества применяются редкие и дорогие металлы, например платина это — огромная производительность каталитического процесса на один грамм нанесенного вещества. Так, например, в работе [79] было дюказано, что продуктивность платинового адсорбционного катализатора в отношении окисления сернистого газа при степени заполнения а=0,00025 в 20 раз выше, чем продуктивность технического контакта из платины на силикагеле, в 40 раз выше, чем продуктивность платины на сульфате магния и в 71 раз выше, чём продуктивность платины на асбесте. Та же картина наблюдается для окисления аммиака [54] на адсорбционных катализаторах. Оказалось, что платиновые адсорбционные катализаторы способны дать на 1 г платины в сутки до 360 /сг НМОз, что в > 25 раз больше производительности платиновой сетки . [c.37]

    Фасетированию под действием реактантов подвержены и напыленные серебряные пленки при нагревании в кислороде при 500 К или в условиях каталитического окисления этилена [60] при этом величина поверхности увеличивается примерно на 30%, а небольшие кристаллиты серебра (<50 нм) исчезают. При 1120—1290 К в водороде подвижность атомов на поверхности платины сильно увеличивается [61], что значительно ускоряет спекание порошкообразной платины. Подробно описано [62] значительное изменение морфологии платиновой проволоки или сетки — катализатора окисления аммиака (1020—1220 К), состоящее в заметном ее фа( етировании. Эти изменения, происходящие с платиновым катализатором гораздо сильнее в условиях реакции, чем под действием любого из реактантов (при сравнимых температурах), объясняются, по-видимому, выделением тепла реакции на поверхности катализатора и локальными перегревами выше температуры реакции. Не все каталитические реакции, вероятно, приводят к значительным изменениям морфологии поверхности катализаторов такого рода изменения не наблюдаются, в частности, в реакциях с участием только углеводородов и водорода, по крайней мере для массивных металлических катализаторов. Тем не менее вполне понятно, что поверхность металла даже при отсутствии значительных изменений Б ее морфологии, способна к реконструкции, ограниченной од-ним-двумя поверхностными атомными слоями, в результате процессов адсорбции или внедрения в решетку молекул реактантов. В этом смысле даже адсорбция углеводородов может иногда вызывать перестройку поверхности, как, например, хемосорбция этилена или бензола на грани (111) никеля, приводящая к образованию внешнего слоя металла [63]. [c.135]

    Ададуров и Дидецко [3] нашли, что простая термическая обработка платиновой сетки не изменяет строения катализатора, но вызывает перекристаллизацию, что подтверждается рентгеновскими снимками и, следовательно, вызывает исчезновение ориентации микрокристаллов металла. Стабилизация пленки окиси на поверхности платины препятствует структурным изменениям поверхности, но если на платиновую сетку подействовать током водорода в течение 30 мин. с последующим нагревом до 750° в токе азота в течение 72 час., то заметных изменений при окислении аммиака не наблюдается. Однако одна обработка в токе водорода приводит к изменениям, подобным тем, которые наблюдаются при каталитическом окислении аммиака. Рентгеновские снимки платиновой сетки, обработанной водородом, показали снижение константы решетки а от [c.259]

    Яды специфичны для различных катализаторов, как и для различных реакций, в которых катализаторы принимают участие. Например, водород действует как яд при образовании воды на сплавах благородных металлов и железа, а кислород отравляет синтез воды на сплавах из благородных металлов и никеля [238] Вода при высокой концентрации отравляет сжигание окиси >тлерода иа различных катализаторах [56]. Соединения мышьяка являются сильными ядами для катализаторов, применяемых в контактном процессе получения серного ангидрида. Мышьяковистый ангидрид — сильный яд для каталитической гидрогенизации с платиной вследствие восстановления его в арсин. Тот же самый яд оказывает относительно слабое действие на активность платины при разложении перекиси водорода. Таким образом, некоторые вещества могут действовать как яды для определенных каталитических реакций, в других случаях совсем не действуя они могут даже действовать как промоторы в некоторых каталитических реакциях. Висмут, сильный яд для железа при каталитической гидрогенизации, является одним из наиболее активных промоторов для же леза при каталитическом окислении аммиака в окись азота. Подобным образом фосфат кальция является промотором для никеля в каталитической гидрогенизации, между тем как фссфор или фосфин сильные яды. Никель, отравленный тиофеном, не гидрогенизирует ароматический цикл, в то время как его способность гидрогенизировать олефины не нарушается [130, 161]. Сера или сульфиды, которые обычно действуют как яды, при каталитическом восстановлении бензоилхлорида и гидрогенизации смол могзт действовать как катализаторы [184]. Сероуглерод действует как ускоритель в процессе растворения кадмия в соляной кислоте [226]. Есть случаи, когда вещество, взятое в маленьких количествах, остается неактивным, но при применении в большом количестве действует как яд. Например, в реакции нафталина с японской кислой землей хлороформ неактивен в малом количестве и не оказывает никакого отравляющего действия, но взятый в большом количестве вызывает уменьшение количества смолы, образующейся с нафталином под влиянием земли. Хлористоводородная кислота, образующаяся из хлороформа, взятого в больших количествах, уменьшает каталитическую активность [134]. [c.392]


Смотреть страницы где упоминается термин Окисление аммиака металлов: [c.33]    [c.294]    [c.102]    [c.10]    [c.129]    [c.170]    [c.120]    [c.398]    [c.45]    [c.235]    [c.11]    [c.256]    [c.279]    [c.326]    [c.62]    [c.260]    [c.279]   
История химии (1975) -- [ c.122 ]




ПОИСК





Смотрите так же термины и статьи:

Аммиак металлами

Аммиак окисление

Металлы окисление

Окисление окисление аммиака



© 2024 chem21.info Реклама на сайте