Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перегруппировки при элиминировании

    Цеолиты катализируют широкий круг реакций насыщенных, непредельных и ароматических углеводородов, включающих в качестве элементарных стадий разрыв и образование связей С—И и С—С, перегруппировки, -элиминирование, которые протекают по карбений-ионному механизму. [c.46]

    Дибензилсульфоксид в этих же условиях дает сложную смесь продуктов перегруппировки, элиминирования и распада — образуются толуол, бензальдегид, бензилмеркаптан и стильбен [1П]. [c.175]


    В противоположность биполярным апротонным растворителям веш,ества типа кислот Льюиса могут вызвать 3 1-реакции или содействовать им, хотя они и стабилизуют лишь один из образуюш ихся из R—X ионов, а именно анион. Остаюш ийся мало стабилизованный сольватацией катион в противоположность аниону часто имеет возможность для внутренней стабилизации благодаря электронным эффектам в остальной части молекулы или последуюш,им реакциям — перегруппировке, элиминированию. Впрочем, это обстоятельство не имеет большого значения, поскольку кислоты Льюиса применяют чаще всего в качестве катализаторов, облегчающих отщепление аниона в соответствии со схемой (4.13), тогда как действительный партнер реакции должен реагировать с катионом, не подвергшимся влиянию катализатора. Так обстоит дело, например, в реакциях алкилирования по Фриделю — Крафтсу. [c.173]

    Разработана [37] система, позволяющая исходя из структуры и масс-спектра низкого разрешения органического соединения выявить его реакции фрагментации и перегруппировки. С этой целью все реакции в масс-спектрометре представляют как процессы переноса электронов, а ионы рассматривают как структуры, связанные валентными связями. Составлена таблица элементарных процессов а -разрыв, индуктивный разрыв, реакция замещения, Н перегруппировка, элиминирование и др. После ионизации данной структуры (для всех возможных пар свободных электронов и п -орбиталей) рассматривают все возможные первичные ионы и их реакции, приводящие к образованию вторичных ионов. На основании сопоставления всех пиков в масс-спектре и совокупности возможных реакций оценивают доверительную вероятность протекания каждого процесса. [c.141]

    Исходный углеводород претерпевает вначале перегруппировку Вагнера—Меервейна. Перегруппировка начинается путем элиминирования экзо-гидрид-иона у С-З образующийся 1,7-диметил-норборнильный катион А не стабилизуется, а в результате гидридного переноса от С-5 к С-6 образуется катион Б, претерпевающий новую перегруппировку Вагнера—Меервейна с образованием [c.216]

    Перегруппировки, сопровождАющие реакции нуклеофильного замещения. Если при замещении по механизму Sn2 единственной конкурирующей реакцией является элиминирование по механизму Е2 с образованием алкенов, то для реакций, протекающих по механизму SnI, характерно значительно большее число побочных процессов, снижающих выход собственно продукта нуклеофильного замещения. [c.131]

    При нукле(х )ильном замещении у насыщенного углеродного атома параллельно идущими процессами могут оказаться элиминирование (отщепление) и перегруппировка. [c.97]

    Третичные спирты метилируются триметилалюминием при температуре 80—200 °С [1089]. Наличие в реакционной смеси продуктов, образующихся в результате элиминирования и перегруппировки, а также отсутствие стереоспецифичности [1090] указывают на реализацию механизма SnI. В реакцию вводились также первичные и вторичные спирты, содержащие арильную группу в а-положении. Применение триалкилалюминия [c.197]


    Перегруппировка идет с высокими выходами и ее можно провести с ароматическими циклами, содержащими различные заместители [205]. Чаще всего в реакцию вводят субстраты, имеющие три метильные группы у азота, но можно использовать и другие группы, однако при наличии р-водорода конкурирующей реакцией часто становится элиминирование по Гофману (т. 4, реакция 17-6). Если три группы у азота разные, могут получаться конкурентные продукты, например [106]  [c.41]

    В т. 4 рассматриваются реакции элиминирования, окисления и восстановления, а также перегруппировки органических соединений. [c.4]

    Расщепление аминоксидов, приводящее к алкену и гидро-ксиламину, называют реакцией Коупа (не следует путать с перегруппировкой Коупа, см. реакцию 18-36). Этот процесс также можно рассматривать как альтернативу реакциям 17-6 и 17-7 [192]. Обычно в реакцию вводят смесь амина и окисляющего агента (см. реакцию 19-29) и аминоксид не выделяют. Реакция идет в мягких условиях, поэтому побочные реакции незначительны, а образующиеся олефины обычно не перегруппировываются, так что реакция служит удобным методом получения многих олефинов. Однако этим методом не удается провести раскрытие шестичленных азотсодержащих гетероциклов, хотя пятичленные циклы и циклы от 7- до 10-членных подвергаются раскрытию [193]. Скорость реакции повышается с увеличением размера а- и (3-заместителей [194]. Реакцию можно провести при комнатной температуре в сухом ДМСО или ТГФ [195]. Элиминирование представляет собой стереоселективный син-про-цесс [196] и осуществляется по механизму Е через пятичленное переходное состояние  [c.53]

    По-видимому, большинство этих реакций начинается с 1,3-перегруппировки азот — кислород, после чего следует само элиминирование так, в случае карбамата [c.84]

    После миграции при атоме А обязательно возникает открытый секстет, поэтому третьей стадией является образование октета при этом атоме. В случае карбокатионов на третьей стадии происходит взаимодействие с нуклеофилом (перегруппировка с замещением) или отщепление атома водорода (перегруппировка с элиминированием). [c.111]

    При 2 = арил с реакцией Стивенса конкурирует перегруппировка Соммле — Хаузера (т. 3, реакция 13-27), а если одна из групп Р содержит р-водородный атом (реакция 17-6 и 17-7), возможно параллельное элиминирование по Гофману. [c.168]

    По простейшим типам механизмов реакций органические реакции делятся на четыре категории, а именно присоединение, замещение, элиминирование и перегруппировка. Эти реакции, называемые также элементарными, протекают либо сами по себе, либо как составная часть более сложных реакций. [c.107]

    В случае полиметилциклопентанов гидрогенолиз значительно осложняется реакциями деметилирования и скелетной изомеризации. Далеко идущие перегруппировки углеродного скелета происходят в тех случаях, когда из-за низкой реакционной способности исходной молекулы опыты проводят при 350 °С и выше, например для три- и тетраметилциклопентанов [163], в которых миграция и элиминирование метильных групп способствуют образованию таких циклопентановых углеводородов, которые легче подвергаются гидрогенолизу [350°С, (10% Р1)/А120з] (см. схему на с. 131). [c.130]

    Бромистый алюминий (типичная кислота Льюиса) путем элиминирования из молекулы углеводорода гидрид-иона способствует образованию иона карбония. Образование иона карбония сопровождается перегруппировкой, включающей миграцию заместителя R затем путемприсоединениягидрид-иона возникаетуглеводород, изомерный исходному. Эти достаточно хорошо известные представления необходимо дополнить некоторыми соображениями, весьма важными для механизма реакций циклических насыщенных углеводородов. Указанная миграция заместителей (реакция III) — это только одна, и причем наиболее простая, реакция цикланов, например, протекающая по схеме  [c.154]

    Напротив, перегруппировка по типу 15]у2-замещепия способствует стереохимически направленному протеканию реакции. При ]у2-реакциях мигрирующая группа атакует неискаженный, тетраэдрический заряженный атом углерода. Такой атаке более доступна сторона, противоположная элиминированному заместителю (в рассматриваемых случаях это гидрид-ион). Следствием определенной ориентации реакционных центров является фиксированное положение входящего (мигрирующего) заместителя, а отсюда — высокая степень стереоспецифичности замещения. В этом случае уже невозможно существование двух, разделенных Энергетическим барьером ионов, как это имеет место в реакциях типа а существует лишь один неклассический ион , про- [c.162]

    Первым этапом реакции является элиминирование экваториального водородного атома у С-2, согласно стереоэлектронным требованиям для реакций сжатия циклов, сформулированным Бартоном [34]. Следующим этапом является миграция связи 6—1, с атакой заряженного тетраэдра С-2 стыла. При этом происходит образование связи 6—2 и разрыв связи 6—1. Стабилизация иона II приводит к 3-метил-г ис-бицикло(4,3,0)йонану. Стереоспецифичность перегруппировки определяется сохранением тетраэдра при С-2 и строго стереонаправленной атакой этого тетраэдра связью 6-1. [c.212]

    Образующийся ион 1-метилбицикло(4,3,0)нонана не имеет строгой фиксации заряда, так как, судя по составу продуктов реакции, заряд распределен по всему циклононановому кольцу и стабилизация катионов происходит с образованием всех возможных метил-бицикло(4,3,0)нонанов. Частично протекает и непосредственная стабилизация этого иона. Высокая скорость перегруппировки определяет ее стереохимическую направленность, так как в ходе превращения образуются преимущественно метил-1 ис-бицик-ло(4,3,0)нонаны. Как и обычно, в реакции сужения цикла первым этапом является элиминирование экваториального атома водорода (гидрид-ион при С-9). [c.223]


    Правило о преимущественном 7п./ акс-элиминировании диаксиальных заместителей нашло свое отражение в своеобразной, быстрой перегруппировке г ис-вицинально замещенных циклогексанов в гел -замещенные углеводороды. (Элиминируемые группы в данном случае аксиальный атом водорода — гидрид-ион и мигрирующий метильный заместитель.) В реакциях сушения цикла первым этапом является элиминирование экваториального атома водорода. В реакциях, протекающих без изменения размеров цикла, элиминируется (также в виде гидрид-иона) аксиально ориентированный водород. В реакциях расширения цикла большое значение имеет конформация заместителя в исходной молекуле. Именно эта конформация определяет структурные и стереохимические особенности протекания реакции расширения циклов и. связь между пространственным расположением замещающих групп в исходных и образующихся при изомеризации углеводородах. Для углеводородов со средними размерами циклов характерной реакцией является одностадийное сжатие цикла с образованием изомерных углеводородов ряда циклогексана, имеющих ту же степень замещения, что и исходные углеводороды. [c.246]

    Независимо от способа получения RN2+ слишком неустойчив, чтобы его можно было выделить [307], и реагирует, вероятно, по механизму SnI или Sn2 [308]. На самом деле механизм точно не установлен, так как данные, полученные при изучении кинетики, стереохимии и продуктов, трудно интерпретировать [309]. Если образуются свободные карбокатионы, они должны давать то же соотношение продуктов замещения, элиминирования и перегруппировки и т. д., что и карбокатионы, генерированные в других реакциях SnI, но часто это не так. Постулировано [310], что горячие карбокатионы [несольватированные и (или) химически активированные], которые могут сохранять свою конфигурацию, образуют ионные пары, в которых противоионом является ОН- (или OA и т. д. в зависимости от метода генерирования диазониевого иона) [311]. [c.83]

    Диазониевые ионы, полученные из простых алифатических первичных аминов, обычно не представляют синтетической ценности, так как приводят к смеси продуктов, поскольку происходит не только замещение с участием присутствующего нуклеофила, но в зависимости от структуры субстрата также элиминирование и перегруппировки. Например, диазотирование н-бутил-амина дает 25% 1-бутаиола, 5,2% 1-хлоробутана, 13,2% 2-бутанола, 36,5 % смеси бутенов (состоящей на 71 % из 1-бу- [c.83]

    Обычно в реакцию вводят субстраты, в которых две группы Z соединены с группой СНг. В таких случаях алкилирование можно провести дважды вначале основание отщепляет протон, затем RX алкилирует образующийся ион, после чего протон отщепляется от Z HRZ и, наконец, происходит алкилирование получающегося енолят-иона тем же или другим RX. Реакция успешно идет с первичными и вторичными алкильными, аллильными (здесь возможна аллильная перегруппировка) и бензильными RX, но не идет с третичными алкилгалогенидами, так как в условиях проведения этой реакции происходит элиминирование (см., однако, ниже). RX может содержать различные функциональные группы, устойчивые к действию основания. Среди побочных реакций, осложняющих этот процесс, уже упоминавшееся конкурентное 0-алкилирование, элиминирование (если енолят-ион сам представляет собой достаточно сильное основание) и дмалкилирование. Один из способов подавления как О-алкилирования, так и диалкилирования состоит в прове-денпи реакции в присутствии фторида тетраалкиламмония. [1129]. [c.202]

    Если в качестве интермедиатов образуются карбокати-оны, в случае подходящих субстратов можно ожидать перегруппировку. Это часто наблюдается в реакциях элиминирования, проводимых в условиях Е1. [c.17]

    При обработке спиртов кислотами обычно происходит элиминирование (например, реакция 17-1) или замещение (т. 2, реакция 10-68). Но во многих случаях, особенно при наличии у р-атома двух или трех алкильных или арильных групп, протекают перегруппировки, которые называют перегруппиров- [c.128]

    При проведении перегруппировки Фаворского для а,а-дига-логенокетонов, содержащих а -водород [148], или а,а -дигало-генокетонов, содержащих а-водород [149], получается сложный а, -ненасыщенный эфир. В любом случае образуется один и тот же циклопропанон. Раскрытие кольца при этом происходит иначе, с последовательным элиминированием иона галогена  [c.145]

    Эта реакция называется перегруппировкой Небера. Группа R обычно является арилом, хотя реакция возможна и для R = алкил или водород. Побочными реакциями являются перегруппировка Бекмана (реакция 18-20) или аномальная реакция Бекмана (элиминирование нитрила, реакция 17-41) они обычно происходят в кислой среде. Сходная реакция протекает с Н,Н-дихлороаминами типа R H2 H(N l2)R с образованием того же R H(NH2) 0R [201]. Механизм перегруппировки Небера следующий [202]  [c.154]

    Амадори наблюдал превращения такого типа на соединениях, структура которых препятствовала образованию озазона (перегруппировка Амадори, 1925—1929). Далее кетон III конденсируется с фенил-гидразоном, давая соединение IV, которое в результате аллильной перегруппировки превращается в V. В результате 1,4-элиминирования анилина получается соединение VI или соединение VII, либо оба вместе последующая конденсация имина с фенилгидразином приводит к образованию фенилозазона и аммиака  [c.535]

    Стабилизация секстета в соединении I [схема (Г.9.2)] может произойти также путем элиминирования, например отщеплением протона от углеродного атома, соседнего с карбкатиониым центром (образование продукта V), либо путем присоединения имеющегося в реакционной смеси нуклеофильного партнера (образование продукта VI). Предпочтительность того или иного пути зависит от относительной устойчивости промежуточных продуктов I и II [схема (Г.9.2)], а также от пространственных эффектов и влияния растворителя. Три возможных направления конкурируют друг с другом. Например, вследствие —/-эффекта трех алкильных групп катион II устойчивее (беднее энергией) по сравнению с катионом I, в котором имеется лишь одна алкильная группа (третичная), влияющая па катионный центр, Пространственные факторы делают перегруппировку более выгодной, когда объемистый остаток у карбкатионного центра затрудняет нуклеофильное замещение (см., однако, разд. Г,3). Сильноосновные растворители иногда могут стабилизовать карбкатионы I [схема (Г.9.2)], препятствуя перегруппировке. [c.265]


Смотреть страницы где упоминается термин Перегруппировки при элиминировании: [c.141]    [c.671]    [c.671]    [c.12]    [c.400]    [c.153]    [c.361]    [c.97]    [c.7]    [c.286]    [c.5]    [c.176]    [c.158]    [c.43]    [c.129]    [c.133]    [c.199]    [c.452]    [c.317]   
Органикум. Практикум по органической химии. Т.2 (1979) -- [ c.305 ]




ПОИСК





Смотрите так же термины и статьи:

Элиминирование Элиминирование



© 2024 chem21.info Реклама на сайте