Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перегруппировки азота

    По-видимому, большинство этих реакций начинается с 1,3-перегруппировки азот — кислород, после чего следует само элиминирование так, в случае карбамата [c.84]

    Деструктивную гидрогенизацию углей с некоторым приближением можно представить как присоединение водорода и отщепление функционального кислорода, азота и серы. Затем происходит разрыв гидрированных соединений, что сопровождается различными перегруппировками и присоединением водорода [8, с. 187]. [c.182]


    Реакция перегруппировки протекает по ионному механизму через образование катиона с зарядом на атоме азота и может быть представлена так  [c.348]

    Образовавшийся в качестве промежуточного продукта анион а распадается на Вг" и неустойчивый промежуточный продукт б с секстетом электронов у азота последний стабилизуется вследствие перемещения к нему алкильного остатка и таким образом получается эфир изоциановой кислоты в. Если атом углерода карбонильной группы является меченым (С ), в результате перегруппировки весь радиоактивный углерод оказывается в образовавшемся СО2. [c.163]

    Причиной перегруппировки промежуточного продукта г в эфир изоциановой кислоты, как уже указывалось при гофмановской перегруппировке, является ненасыщенность атома азота, стремящегося дополнить секстет электронов до октета. [c.163]

    В случае наличия сильного электроотрицательного заместителя и а-атома кислорода или азота (амиды, карбонаты, фосфаты и так далее) может осуществляться перегруппировка с миграцией двух атомов водорода. [c.112]

    Первой стадией бензидиновой перегруппировки является протонирование обоих атомов азота. На основании кинетических исследований было установлено, что реакция имеет первый порядок по реагирующему гидразобензолу и второй — по кислоте. Предполагают, что присоединение протонов происходит последовательно, причем стадией, лимитирующей скорость всего про- [c.422]

    Взаимодействие бензольных ядер за счет пара-, а не орто-положений, возможно, обусловлено тем, что в них меньше сказывается влияние -/-эффекта, обусловленного положительно заряженными атомами азота. Перегруппировка завершается отщеплением двух протонов из пара-положений относительно [c.423]

    Механизм этой перегруппировки трактуется следующим образом. Катализатор способствует отрыву молекулы азота от диазокетона, в результате чего на атоме углерода, ранее связанном с диазогруппой, остается секстет электронов. Последующая достройка электронной оболочки до октета у этого атома происходит в результате миграции группы К в виде аниона с последующим смещением электронной плотности, приводящим к образованию кетена  [c.470]

    Перегруппировка у атома азота с секстетом электронов [c.297]

    При действии на алициклические амины азотистой кислотой, наряду с образованием нормальных карбинолов, происходит сужение или расширение цикла (перегруппировка Демьянова). Расширение цикла протекает по механизму ретропинаколиновой перегруппировки, а сужение — по типу пинаколиновой. В основе процесса лежит образование нестойкого диазосоединения, которое с выделением азота образует катион, претерпевающий дальнейшую перегруппировку  [c.210]


    Перегруппировка идет с высокими выходами и ее можно провести с ароматическими циклами, содержащими различные заместители [205]. Чаще всего в реакцию вводят субстраты, имеющие три метильные группы у азота, но можно использовать и другие группы, однако при наличии р-водорода конкурирующей реакцией часто становится элиминирование по Гофману (т. 4, реакция 17-6). Если три группы у азота разные, могут получаться конкурентные продукты, например [106]  [c.41]

    Первым отрывается наиболее кислый бензильный водород, в результате чего образуется илид 19. Однако перегруппировке подвергается соединение 20, присутствующее в меньших количествах, но сдвигающее равновесие в свою сторону. Показанный механизм является примером [2,3]-сигматропной перегруппировки (см. т. 4, реакцию 18-39). Другой возможный механизм предусматривает действительный отрыв метильной группы (в той или иной форме) от азота и последующее присоединение ее к кольцу. То, что это не так, было показано изучением продуктов с помощью изотопной метки [209]. Если бы второй механизм был верен, из интермедиата 21 должен был образоваться продукт 22, однако в действительности образуется продукт 23, что согласуется с первым механизмом [210]. В опы- [c.42]

    Хотя мы представили этот механизм как трехстадийный и некоторые реакции действительно происходят таким образом, в большинстве случаев два или три превращения происходят одновременно. Например, в перегруппировке с образованием нитрена при миграции R электронная пара от азота мигрирует к связи С—N, давая стабильный изоцианат  [c.111]

    Илиды серы, содержащие аллильную группу, при нагревании превращаются в ненасыщенные сульфиды [515]. Процесс представляет собой согласованную [2,3]-сигматропную перегруппировку [516] показано, что аналогичным образом реагируют илиды азота [517], сопряженные основания простых аллиловых эфиров [518], а также некоторые другие системы [519]. Перегруппировка была распространена даже на системы, целиком состоящие из атомов углерода [520]. [c.213]

    При действии на первичные нитропарафины концентрированных ще.яочей, кроме-образования солей нитроновых кислот, проходят также побочные реакции, ведущие к глубокому изменению исходного продукта. Особенно чувствителен к действию концентрированных ш,елочей нитрометан, который при действии концентрированных щелочей конденсируется с образованием метазоновой кислоты [15]. Этот процесс конденсации можно представить как присоединение молекулы нитрометана к двойной связи, углерод — азот ациформы другой молекулы нитрометана, сопровождающееся перегруппировкой и отщеплением воды. Метазоновая кислота является оксимом нитроацетальдегида  [c.268]

    Стэйвли [42] измерил среднюю длину цепи радикальной реакции с помощью окиси азота. Найденные им величины меняются от 20,6 при давлении 50 мм рт. ст. до 6,4 при давлении 500 мм рт. ст. при температуре 620° С. Это не может быть истинной длиной цепи, так как эти данные совершенно несовместимы с приведенными выше величинами констант скорости. Действительная длина цепи, измеренная по относительным скоростям реакций развития и обрыва цепи, должна составлять песколько тысяч единиц. Если ингибированная реакция является молекулярной, то эти результаты могут быть объяснены допущением, что непосредственная молекулярная перегруппировка в этилен и водорода должна происходить значительно чаще, чем расщепление молекулы этана на два метил-радикала. [c.26]

    Перегруппировка эфира в диаллилдиан происходит при нагревании эфира до определенной температуры . Так, согласно методике , диаллиловый эфир растворяют в диметиланилине и нагревают в токе азота до 210—215 °С в течение 4 ч. После охлаждения реакционной массы до комнатной температуры в токе азота ее растворяют в диэтиловом эфире, эфирный раствор промывают разбавленной серной кислотой для удаления диметиланилина, азатем слабым раствором щелочи и дистиллированной водой до нейтральной реакции. После высушивания над прокаленным поташем и отгонки растворителя продукт перегоняют в вакууме (т. кип. 217 °С цри 0,5 мм рт. ст.). Выход диаллилдиана составляет 63%. [c.24]

    Попытки точного определения процентного состава асфальтенов не приводят ни к чему, так как,, представляя собой соединения углерода и водорода, они могут иногда содержать и серу, кислород, даже азот. Присутствие этих последних элементов не объясняется Bob e наличием лишь примесей оця могут играть также известную роль и в образовании асфальтов. Кроме того природные продукты, изученные до сих пор, не представляли чего-то однородного, но были составлены из весьма различных веществ. Эти- вещества разделялись чрезвычайно трудно, и применявшиеся для этого средства часто служили причиной перегруппировки и полимеризации, что делало еще неблагодарнее предпринятую задачу. [c.113]

    Полученный раствор фосфата гидроксиламина используют для синтеза цикло-гексаноноксима, который затем подвергают бекмановской перегруппировке в капролактам в присутствии олеума. Раствор фосфата аммония, получающийся на стадии оксимирования, регенерируется посредст-вом пропускания через него кислорода и окислов азота [c.308]


    При расщеплении азидов кислот H2n4 l ONз, по Курциусу, тоже происходит внутримолекулярная перегруппировка. Если нагревать азид кислоты в спирте, то он вначале теряет 1 молекулу азота образующийся при этом неустойчивый радикал г перегруппировывается в эфир изоциановой кислоты, который мгновенно присоединяет спирт н превращается в так называемый уретан — эфир алкилкарбаминовой кислоты. Уретаны омыляются до аминов при нагревании с кислотами или щелочами  [c.163]

    Очевидно, что бекмановская перегруппировка может быть исноль-.зована для определения конфигурации стереоизомерных кетоксимов конечно, для этого необходимо, чтобы обмен местами между гидроксильной группой и органическим остатком всегда проис.ходил одинаковым образом. Как уже было указано, б большинстве случаев перемещается и присоединяется к атому азота группировка, пространственно удаленная от гидроксила. Однако это ие всегда удается подтвердить опытным путе.м. Кроме того, существует мнение, что бек.ма-иовская перегруппировка иногда протекает таки е по старой схеме, т. е. местами обмениваются соседние группы, и что то или иное течение реакции зависит от особенностей строения нретерневающего перегрун-пировку соединения. [c.636]

    Интересную перегруппировку претерпевает цинхонин при длительном нагревании с уксусной или фосфорной кислотой. Продуктом реакции является кетон (цинхотоксин, или цинхонидин), образующийся в результате так называемого гидраминного расщепления , которое часто наблюдается у аминоспиртов, имеющих гидроксил и азот у соседних атомов углерода  [c.1087]

    Явления, наблюдаемые п 1и поликондепсации диазометана, с наибольшей полнотой можно объяснить, предположив, что рост цепи происходит путем повторения реакции образования координационной связи между соединением бора и молекулой диазометана с последующим быстрым выделением азота н перегруппировкой образовавшегося бииона [c.198]

    Миграция водорода энергетически более выгодна по сравнению с простым разрывом связи без миграции, так как она приводит к образованию двойной связи с каждой разорванной связью образуется новая. Атом водорода мигрирует из Р-положения к разрываемой связи. Наличие в цепи атома кислорода или азота в а-положении к разрываемой связи увеличивает вероятность данной перегруппировки, очевидно, благодаря наличию у них несвязанных электронов. Так, в спектре пропилбензола интенсивность перегруппировочного пика с массой 92 равна всего 0,3%. При введении кислорода (фе-нилэтиловый эфир) пик соответствующего перегруппировочного иона с массой 94 становится максимальным в спектре. [c.112]

    Интересные результаты получены для таких производных гидразобензола, у которых атомы азота дополнительно связаны полиметнленовыми цепочками различной длины [формула (24)]. Было показано, что бензидиновая перегруппировка возможна для соединений, у которых число атомов углерода в подобной полиметиленовой цепочке составляет не менее десяти (п>8). При я = 1 образуется 1,3-ди(фениламино)пропан, при я=2 —смесь производных дифе-нилина (25), семидина (26) и 1,4-ди(фениламино)бутана, при =3—4 — производное дифенила. [c.422]

    Расщепление амидов по Гофману протекает с перегру1шировкой, подобной перегруппировкам карбониевых ионов группа R, связанная с атомом углерода карбонильной группы амида, оказываегся связанной с атомом азота в конечном соединении — амине  [c.102]

    Сульфирование анилина требует повышенной температуры, так как сначала образуется соль, в которой аммонийный атом азота перестает быть донором электронов. При этом сульфогруппа попадае в ядро вследствие перегруппировки первоначально образующейся ( енилсульфаминовой кислоты  [c.262]

    Описанная выше перегруппировка фенилсульфаминовой кислоты— один из примеров большой группы формально родственных перегруппировок, в которых заместитель V, связанный с атомом азота в производном анилина, мигрирует в о- или п-положение  [c.262]

    Влияние конформационных эффектов на реакционную способность можно рассматривать наряду с остальными стериче-скими эффектами [9а], но в этом случае речь идет не о влиянии группы X или другой группы X на реакционный центр V, а о влиянии на реакционную способность конформации молекулы. Многие реакции вообще не имеют места, если молекула не способна принять нужную конформацию. Примером служит перегруппировка Ы-бензоилнорэфедрина. При обработке спиртовым раствором НС1 два диастереомера этого соединения ведут себя совершенно различно в одном изомере происходит миграция от атома азота к кислороду, тогда как другой изомер вообще не вступает в реакцию [10]. Для того чтобы произошла миграция бензоильной группы, атомы азота и кислорода должны находиться близко друг к другу (в гош-конформации). Для изомера 3 эта конформация выгодна, так как тогда метильная и фенильная группы находятся в ангы-положении относительно друг друга, но для изомера 4 эта конформация невыгодна, поскольку метильная группа тогда должна находиться в гош-положении по отношению к фенильной группе поэтому в последнем случае реакцня не имеет места. Другие при- [c.364]

    Еще один процесс гидроксилирования, называемый реакцией Эльбса [160], заключается в окислении фенолов в г-дифенолы под действием персульфата калия K2S2O8 в щелочной среде [161]. Окисление первичных, вторичных или третичных ароматических аминов приводит преимущественно или исключительно к орто-производным если же оба орто-положения заняты, образуется пара-изомер. Реакция с аминами носит название окисления по Бойлэнду — Симсу. Как с фенолами, так и с аминами выходы обычно не превыщают 50 7о- Механизм реакции окончательно не выяснен, но вполне возможно, что он включает атаку кислорода или азота ионом ЗгОз " и последующую перегруппировку, приводящую к образованию соответствующих продуктов [162]. [c.81]

    Лучшим доказательством этого механизма послужило выделение азиринового интермедиата [203]. В противоположность перегруппировке Бекмана перегруппировка Небера стерически неразличима [204] син- и а ти-изомеры дают одинаковые продукты. Если имеются две С—Н-группы, к которым может мигрировать азот, уходит более кислый протон. Механизм, представленный выще, состоит из трех стадий. Последней стадией является гидролиз имина (т. 3, реакция 16-2). Однако возможно, что первые две стадии происходят согласованно, а вто- [c.154]

    К азоту. Некоторые бициклические Ы-галогеноамины, например М-хлоро-2-азабицикло[2.2.2]октан (он и изображен на схеме), перегруппировываются при сольволизе в присутствии нитрата серебра [261]. Эта реакция подобна перегруппировке Вагнера — Меервейна (18-1) и инициируется катализируемым серебром отрывом хлорид-иона [262]. Подобные реакции были использованы для расширения и сужения кольца, так же как и реакция 18-3 [263]. Примером может служить конверсия 1-(Ы-хлороами-но)циклопропанолов в 3-лактамы [264]  [c.164]

    Рассматривался также третий механизм, представляющий согласованный 1,2-сдвиг [294]. Поскольку принцип орбитальной симметрии требует инверсии при R [295] и запрещает миграцию с сохранением конфигурации (см. реакцию 18-35), согласованный механизм [296] для перегруппировки Стивенса невозможен, так как на самом деле миграция происходит с сохранением конфигурации. Однако для миграции аллильной группы этот механизм может быть справедлив (реакция 18-39). Превращение оптически активного аллилбензилметилфениламмо-нийиодида с асимметрическим атомом азота (т. 1, разд. 4.2) в оптически активный продукт [297] согласуется со всеми тремя механизмами  [c.168]

    Поскольку реакция включает миграцию аллильной группы от серы, азота или кислорода к соседнему отрицательно заряженному атому углерода, ее можно рассматривать как особый случай перегруппировок Стивенса или Виттига (реакции 18-24 и 18-25). Однако в указанных реакциях могут мигрировать и другие группы, а в данном случае мигрирующей группой должна быть аллильная. При этом имеются две возможности 1) ион-радикальный механизм или механизм с участием ионной пары (реакции 18-24, 18-25) и 2) согласованная перициклическая [2,3]-сигматропная перегруппировка. Эти два пути нетрудно различить, так как последний всегда включает аллильный сдвиг (как в перегруппировке Кляйзена), а первый — нет. Конечно, миграция групп, отличных от аллильной, может происходить только по ион-радикальному механизму или по механизму с участием ионной пары, поскольку согласованный [c.213]

    В больщинстве предлагавшихся механизмов делалась попытка показать, как при варьировании одного процесса могут образоваться все пять продуктов [529]. Важную роль сыграли эксперименты с изотопной меткой, показавшие, что два главных продукта (139 и 140) образуются совершенно разными путями [530]. При проведении реакции с гидразобензолом, меченным по обоим атомам азота, изотопный эффект для образования 139 составлял 1,022, тогда как для образования 140 эта величина была 1,063. Это указывало на то, что в обоих случаях связь N—N разрывается в лимитирующей стадии, но сами эти стадии, очевидно, различны. При проведении реакции с гидразобензолом, меченным " С в /гара-положении, изотопный эффект для образования 139 составлял 1,028, но для образования 140 изотопный эффект практически отсутствовал (1,001). Это может означать только одно для продукта 139 образование новой связи С—С и разрыв связи N—N происходят в лимитирующей стадии иными словами, процесс идет по согласованному механизму. Это объясняет показанная ниже [5,5]-сиг-матропная перегруппировка [531]  [c.216]


Смотреть страницы где упоминается термин Перегруппировки азота: [c.19]    [c.411]    [c.106]    [c.308]    [c.481]    [c.241]    [c.620]    [c.635]    [c.423]    [c.106]    [c.157]    [c.40]    [c.155]    [c.167]    [c.224]   
Введение в электронную теорию органических реакций (1965) -- [ c.488 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие с водой и ангидридами Перегруппировка Гофмана Органические соединения азота

Молекулярные перегруппировки с участием атомов азота и кислорода

Перегруппировки нуклеофильные у атома азота

Перегруппировки с диспропорционированием относительно азота

Перегруппировки с участием атома азота

Перегруппировки с участием илидов азота

Перегруппировки у атома азота

Перегруппировки у электронодефицитного атома азота

Перегруппировки электронного секстета азота



© 2024 chem21.info Реклама на сайте