Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элиминирование ионное

    Для нативных асфальтенов (кривая 1) элиминирование иона НСГ начинается при 200-300 <>С (в гл оком вакууме). Образование иона НСГ с массой 36 для асфальтенов, обработанных щелочью (кривая 2), начинается только при 300 °С. При 300 °С вероятность образования иона НСГ очень близка для обоих образцов, т. е. вероятно происходит деструкция близких по строению соединений. Учитывая, что вещества, кипящие при 225 °С в глубоком вакууме, выкипают при атмосферном давлении при температуре около 500 °С, можно сделать заключение, что [c.120]


    Атака ионом гидроксила и элиминирование иона брома совершаются синхронно. [c.370]

    В присутствии катионов N3+, К+, Ь1+ перенос электрона на анион-радикал облегчается за счет большей склонности к образованию ионных пар с последующим элиминированием иона КаО з [c.163]

    Наиболее простой механизм МФК в присутствии сильных щелочей (например, механизмы Н/В-обмена и изомеризации), по всей видимости, включают экстракцию гидроксида. Многие другие механизмы глубоко не изучены. В случае МФК механизмы могут сильно изменяться в зависимости от характера субстрата и условий реакции. Так, например, р-элиминирование может проходить межфазно, если катализатор облегчает стадию депротонирования. В то же время, если в органической фазе присутствуют малые количества ионов гидроксида четвертичного аммония, то и депротонирование будет осуществляться в этой же фазе. Однако известен еще и третий механизм. Он наблюдается в отсутствие оснований при повышенных температурах. В неполярных средах относительно несольватированные ионы галогенидов ведут себя как основания (см. гл. 1) на-лример, пентахлорэтан дегидрохлорируется галогенидами аммония в условиях запатентованного промышленного процесса  [c.64]

    Маршрут б Элиминирование, проходящее с участием ионной пары К Ы+Х—. [c.243]

    Концентрированные неорганические основания могут часто вызывать -элиминирование. В самом деле, катализируемое основаниями образование дигалокарбенов является одной из наиболее щироко применяемых МФК-реакций. Первая стадия этой реакции — депротонирование, как правило, идет намного быстрее, чем последующее отщепление галогенид-иона. Таким образом, в присутствии подходящего акцептора реакции первоначально образовавщихся анионов могут конкурировать или даже преобладать над реакциями карбенов. В данном разделе эти родственные реакции рассматриваются совместно. Уделено внимание также описанию современных методик получения дигалокарбенов в условиях МФК в отсутствие оснований, хотя, строго говоря, эти методики и не относятся к настоящему разделу. Наконец, будут рассмотрены реакции других карбенов. [c.289]

    Исходный углеводород претерпевает вначале перегруппировку Вагнера—Меервейна. Перегруппировка начинается путем элиминирования экзо-гидрид-иона у С-З образующийся 1,7-диметил-норборнильный катион А не стабилизуется, а в результате гидридного переноса от С-5 к С-6 образуется катион Б, претерпевающий новую перегруппировку Вагнера—Меервейна с образованием [c.216]


    Стабилизация иона карбония происходит путем атаки гидрид-ионом с доступной экзо-стороны, т. е. с той же стороны, откуда происходило первичное элиминирование того же гидрид-иона. [c.216]

    Отщепление может продолжаться до образования ионов СН и С2Н требующих высоких энергетических затрат. Но образование этих нестойких ионов маловероятно, и в итоге реакций i -отщепления получаются карбокатионы с числом атомов углерода 3, 4 и 5. Б условиях каталитического крекинга -отщепление на ранних стадиях прерывается за счет конкуренции реакций Н-переноса и элиминирования протона, что обусловливает образование многочисленных углеводородных соединений различной молекулярной массы. Снижение температуры реакции способствует увеличению вклада реакций Н-переноса (по сравнению с -отщеплением), росту средней молекулярной массы и увеличению доли насыщенных углеводородов в продуктах крекинга. [c.77]

    Реакции присоединения и отщепления (элиминирования) часто протекают по ионному механизму в присутствии катализаторов. [c.77]

    Следовательно, единственным приемлемым механизмом реакции элиминирования следует признать синхронное отщепление протона и бромид-иона от молекулы этилбромида. [c.107]

    При этом связь между углеродом и галогеном приобретает в известной степени характер двойной связи, ее длина укорачивается (от 1,78 до 1,72 А). Все это приводит к повыщению энергии связи С—X, уменьшению ее поляризации и понижению реакционной способности атома галогена при химических реакциях. Например, труднее протекают реакции элиминирования. В этом случае необходимо присутствие более сильных оснований вместо этилат-иона применяют амид-ион, т. е. в качестве растворителя используют не спирт, а аммиак. [c.101]

    Важнейшим фактором, определяющим сложность и многообразие процессов электросинтеза органических веществ, безусловно является наличие в суммарном процессе неэлектрохимических стадий. Синтезируемые в результате электронного переноса нестабильные промежуточные продукты — свободные радикалы и ион-радикалы, карбанионы и ионы карбония, — как правило, обладают высокой реакционной способностью и вступают в разнообразные химические реакции, которые в свою очередь могут состоять из нескольких стадий. К их числу относятся реакции протонирования и депротонирования, димеризации, полимеризации, сочетания, конденсации, гидратации и дегидратации, элиминирования отдельных групп, замыкания и размыкания циклов, изомеризации и другие. Часто имеет место химическое взаимо- [c.189]

    При проведении перегруппировки Фаворского для а,а-дига-логенокетонов, содержащих а -водород [148], или а,а -дигало-генокетонов, содержащих а-водород [149], получается сложный а, -ненасыщенный эфир. В любом случае образуется один и тот же циклопропанон. Раскрытие кольца при этом происходит иначе, с последовательным элиминированием иона галогена  [c.145]

    Как полагают Таками и др. [540], разложение К-монозамещен-ных дитиокарбаматов в присутствии щелочи (К,Ы-дизамещенные дитиокарбаматы стабильны в этих условиях) происходит путем элиминирования иона Н8 из (603), причем оно происходит таким же образом даже в сильноосновной среде. Это противоречит мнению Джориса и др. [539], которые полагают, что при pH И разложение происходит с участием дианиона (602), а при бодее низких значениях pH с участием иона (603), но при этом скорость разложения определяется концентрацией кислорода в среде (уравнения 331, 332).  [c.691]

    На рис. 1 в качестве примера приведен масс-спектр деканоил (do + з)-С1у-Рго-Тгр-Ьеи-ОМе (М 639 и 642) [25]. Примечательно наличие в масс-спектре этого пептида пары пиков при mie 510 и 513. Они возникли в результате потери 129 м. ед. ( 9H7N — точное измерение массы иона) триптофановой частью пептидной цепи. Однако имеется интенсивный пик при т/е 130, который свидетельствует о наличии триптофанового остатка в молекуле пептида. Последующее элиминирование ионами при т/е 510 и 513 Leu-ОСНз приводит к образованию ионов при т/е 365 и 368. [c.196]

    Элим. — элиминирование (ионное) (а) — заместитель элиминируется с аатипараллельным (а)—атомом водорода. [c.123]

    Общая особенность фторидов азота заключается в их способности к элиминированию иона фторида при взаимодействии с сильными льюисовыми кислотами, ведущем к образованию солей с фторазотными катионами. Для реакции предложен термин дефторидиро-вание [384]. [c.217]

    Ионные двойные слои на границе металл — раствор отсут-стЕуют, так как взяты нулевые растворы. Диффузионный потенциал на границе двух жидкостей элиминирован благодаря применению солевого мостика с насыщенным раствором хлористого калия в промежуточном стакане С (см. гл. XXI, стр. 568). В этом случае также измеряется вольта-потенциал, но уже не в вакууме, а в воде (рассматриваемой как диэлектрик). Таким образом, в этом случае [c.535]

    Авторы сохранили общий строй книги, но для облегчения пользования материалом отказались от разделения процессов на реакции, проходящие в присутствии и в отсутствие щелочи, воспользовавщись классификацией по типам реакций. Введены отдельные разделы по хиральным и полимерносвязанным катализаторам, которые отсутствовали в первом издании, а также новые разделы относительно нуклеофильного ароматического замещения и реакций металлоорганических соединений в условиях межфазного катализа. Основную часть книги занимает гл. 3, посвященная практическому использованию межфазного катализа, где достаточно подробно освещены вопросы техники проведения межфазных реакций, а затем последовательно обсуждено применение межфазного катализа в реакциях замещения (синтез галогенидов, включая фториды, синтезы нитрилов, сложных эфиров, тиолов и сульфидов, простых эфиров, Ы- и С-алкилирование, в том числе амбидентных ионов), изомеризации и дейтерообмена, присоединения к кратным С—С-связям, включая неактивированные, присоединения к С = 0-связям, р-элиминирования, гидролиза, генерирования и превращения фосфониевых и сульфониевых илидов, в нуклеофильном ароматическом замещении, в различных реакциях (ион-радикальных, радикальных, электрохимических и др.), в металлоорганической химии, при а-элиминировании (генерировании и присоединении дигалокарбенов и тригалометилид-ных анионов), окислении и восстановлении. В каждом разделе приведены конкретные методики проведения реакций в различных условиях межфазного катализа и таблицы примеров синтеза разнообразных классов соединений. В монографии использовано более 2000 литературных источников. [c.6]


    Когда такие факторы, как природа субстрата, нуклеофила и уходящей группы, постоянны, активация аниона зависит от растворителя, а также от природы и концентрации лиганда. Бициклические криптанды, такие, как 5, оказывают более сильное влияние, так как они в большей степени охватывают катион, образуя тем самым более стабильные комплексы. В полярных апротонных растворителях крауны обусловливают усиление диссоциации. В других системах (например, грег-бутоксид натрия в ДМСО) ионные агрегаты разрушаются в результате комплексообразования с краунами, что приводит к увеличению основности алкоксида, измеряемой скоростью отщепления протона [101]. В менее полярной среде, такой, как ТГФ или диоксан, доминирующими частицами являются ионные пары. В этом случае краун-эфиры могут благоприятствовать образованию разделенных растворителем более свободных (рыхлых) ионных пар [38, 81] с более высокой реакционной способностью [102]. Даже в гидроксилсодержащих растворителях при добавлении краунов наблюдаются удивительные эффекты, так как изменяются структура и состав сольватной оболочки вокруг ионной пары и ионные агрегаты частично разрушаются. Например, сильно изменяется соотношение син1 анти-изомеров при элиминировании, катализируемом основаниями [103]. [c.40]

    В результате превращения цри действии краун-эфира агрегатов ионных пар или контактных ионных пар в сольватнораз-деленные ионные пары всегда образуется более реакционноспособный анион. Этот эффект был использован во многих случаях. Некоторые из них, относящиеся к МФК, будут рассмотрены в других разделах этой книги. Что же касается реакций, катализируемых основаниями, то следует помнить, что по сравнению с гомогенными реакциями применение краун-эфиров в МФК изменяет не только скорость реакции [434, 918, 1284], но даже отношение син-изомер/анги-изомер и региоселективность элиминирования НХ [220—222]. [c.96]

    Возвращаясь теперь к обсуждению методов получения фторидов, которые имеют свои особенности, вспомним, что сравнительно мало сольватированные фторидные ионные пары в МФК-реакциях выступают и как нуклеофилы, и как основания. Это лриводит к тому, что возрастает конкуренция между замещением, гидролизом и элиминированием. Монтанари и сотр. [52] проводили реакцию следующим образом первичный или вторичный алкилбромид, хлорид или мезилат встряхивали при 100—160 °С с насыщенным раствором КР и каталитическим количеством трибутилгексадецилфосфонийбромида в течение [c.114]

    При 100°С бензилхлоридом (20 мин), циклогексил- или неопен-тилбромидом (40 ч) выходы 85—100% Оптически чистый ал килметансульфонат дает продукты с инверсией около 90%. Для-некоторых вторичных субстратов и неопентилбромида в качестве побочной реакции наблюдается элиминирование. Скорость-реакций намного ниже при использовании в качестве растворителя амилового спирта. Это наблюдение согласуется с предположением о том, что для протекания быстрой МФК-реакции необходимо, чтобы ионные пары были несольватированы [258,. 1524]. (О реакциях, идущих в присутствии краун-эфиров см. [1108, 1379, 1534].) При алкилировании 2-бромалканоатами в-системе твердая фаза/жидкая фаза с хиральным катализатором были получены оптически активные 2-фталимидные эфиры с низкими или умеренными оптическими выходами [940, 1469] см. разд. 3.1.5. [c.164]

    Другим ТИПОМ двухфазной реакции элиминирования является легко протекающее дегалогенирование вицинальных дибром-алканов (А) под влиянием иона иодида. [c.239]

    С такими основаниями, как трет-бутоксид калия, реакции проводят большей частью в полярных апротонных растворителях, однако иногда используют и бензол, в котором такие основания растворяются довольно плохо. В том и другом случае прибавление краун-эфира не только изменяет растворимость, но, кроме того, оказывает сильное влияние на ассоциацию ионов. Это приводит, как уже указывалось выше, к радикальному изменению скоростей реакций, ориентации и стереохимии -элими-нирования [454, обзор 455]. Гладко и в мягких условиях проходит дегидрогалогенирование хлор- и бромалканов при нагревании их с твердым трег-бутоксидом калия и 1 мол. % 18-крауна-б в петролейном эфире при температуре более низкой, чем температура кипения образующегося алкена. В этих условиях бор-нилхлорид, например, за 6 ч при 120°С образует 92% борнена без примеси камфена и трициклена [1104]. В сходных условиях из 1,2- и 1,1-дигалогенидов можно получить 1-алкины. Геминаль-ные дихлориды (полученные из кетонов и P I5) с прекрасным выходом дают замещенные алкины. Изомеризация этих алки-нов в аллены или сдвиг тройной связи в другое положение протекает существенно медленнее, чем обычный процесс элиминирования. -Галогеналкены подвергаются смн-элиминированию под действием системы грет-ВиОК/краун, давая алкины с хорошим выходом [1105]. [c.240]

    Алкилирующие агенты, в частности олефины, при взаимодействии с кислотными катализаторами способны димеризоваться и тримеризоваться с образованием более высокомолекулярных ароматических углеводородов. Подобные превращения могут протекать и при отщеплении от полиалкилбензолов алкилкарбо-ниевых ионов, которые в результате элиминирования протона образуют олефин.. По-видимому, реакциями полимеризации олефинов и распадом промежуточных карбокатионов объясняется появление пропил- и бутилбензолов при алкилировании бензола этиленом. [c.152]

    Бромистый алюминий (типичная кислота Льюиса) путем элиминирования из молекулы углеводорода гидрид-иона способствует образованию иона карбония. Образование иона карбония сопровождается перегруппировкой, включающей миграцию заместителя R затем путемприсоединениягидрид-иона возникаетуглеводород, изомерный исходному. Эти достаточно хорошо известные представления необходимо дополнить некоторыми соображениями, весьма важными для механизма реакций циклических насыщенных углеводородов. Указанная миграция заместителей (реакция III) — это только одна, и причем наиболее простая, реакция цикланов, например, протекающая по схеме  [c.154]

    Напротив, перегруппировка по типу 15]у2-замещепия способствует стереохимически направленному протеканию реакции. При ]у2-реакциях мигрирующая группа атакует неискаженный, тетраэдрический заряженный атом углерода. Такой атаке более доступна сторона, противоположная элиминированному заместителю (в рассматриваемых случаях это гидрид-ион). Следствием определенной ориентации реакционных центров является фиксированное положение входящего (мигрирующего) заместителя, а отсюда — высокая степень стереоспецифичности замещения. В этом случае уже невозможно существование двух, разделенных Энергетическим барьером ионов, как это имеет место в реакциях типа а существует лишь один неклассический ион , про- [c.162]

    Первым этапом реакции является элиминирование экваториального водородного атома у С-2, согласно стереоэлектронным требованиям для реакций сжатия циклов, сформулированным Бартоном [34]. Следующим этапом является миграция связи 6—1, с атакой заряженного тетраэдра С-2 стыла. При этом происходит образование связи 6—2 и разрыв связи 6—1. Стабилизация иона II приводит к 3-метил-г ис-бицикло(4,3,0)йонану. Стереоспецифичность перегруппировки определяется сохранением тетраэдра при С-2 и строго стереонаправленной атакой этого тетраэдра связью 6-1. [c.212]

    Образующийся ион 1-метилбицикло(4,3,0)нонана не имеет строгой фиксации заряда, так как, судя по составу продуктов реакции, заряд распределен по всему циклононановому кольцу и стабилизация катионов происходит с образованием всех возможных метил-бицикло(4,3,0)нонанов. Частично протекает и непосредственная стабилизация этого иона. Высокая скорость перегруппировки определяет ее стереохимическую направленность, так как в ходе превращения образуются преимущественно метил-1 ис-бицик-ло(4,3,0)нонаны. Как и обычно, в реакции сужения цикла первым этапом является элиминирование экваториального атома водорода (гидрид-ион при С-9). [c.223]

    Правило о преимущественном 7п./ акс-элиминировании диаксиальных заместителей нашло свое отражение в своеобразной, быстрой перегруппировке г ис-вицинально замещенных циклогексанов в гел -замещенные углеводороды. (Элиминируемые группы в данном случае аксиальный атом водорода — гидрид-ион и мигрирующий метильный заместитель.) В реакциях сушения цикла первым этапом является элиминирование экваториального атома водорода. В реакциях, протекающих без изменения размеров цикла, элиминируется (также в виде гидрид-иона) аксиально ориентированный водород. В реакциях расширения цикла большое значение имеет конформация заместителя в исходной молекуле. Именно эта конформация определяет структурные и стереохимические особенности протекания реакции расширения циклов и. связь между пространственным расположением замещающих групп в исходных и образующихся при изомеризации углеводородах. Для углеводородов со средними размерами циклов характерной реакцией является одностадийное сжатие цикла с образованием изомерных углеводородов ряда циклогексана, имеющих ту же степень замещения, что и исходные углеводороды. [c.246]

    Основными реакциями превращения карбениевого иона являются р-отщепление, изомеризация с перемещением алкильной группы или водородного атома, элиминирование протона, Н-пе-ренос и присоединение  [c.76]

    Конденсация. Для конденсации так же, как и для присоединения, характерно образование С—С-связи. Конденсация ароматических углеводородов, даю-, шая соединения с более высокой молекулярной массой, вплоть до кокса [1, 10, 22], характерна для каталитического крекинга. При этом ароматический карбе-ний-ион вступает в последовательные реакции присоединения к ароматическим углеводородам и Н-переноса. Процесс конденсацин вследствие высокой стабильности многоядерного ароматического карбений-иона может продолжаться дальше до элиминирования протона. [c.82]

    Карбокатионы стремятся снять неустойчивость, удаляя положительный заряд посредством отщепления маленького иона. Самый распространенный тип таких реакщш - элиминирование (отщепление) протона под действием основных реагентов с образованием двойной связи  [c.80]

    Обращает на себя внимание тот факт, что несмотря на значительное расхождение основностей С2Н4 и СН, (1), СбНб и СН, (2) скорости их элиминирования из МН" - ионов одинаковы. Обусловлено это, очевидно, тем обстоятельством, что существенные отличия в СП уходящих молекул компенсируются отличием в стабильностях образующихся ионов, а также различной способностью функциональных групп влиять на локализацию протона в молекуле. [c.171]


Смотреть страницы где упоминается термин Элиминирование ионное: [c.34]    [c.368]    [c.690]    [c.121]    [c.690]    [c.691]    [c.185]    [c.103]    [c.43]    [c.132]    [c.272]    [c.123]    [c.89]   
Общий практикум по органической химии (1965) -- [ c.202 ]

Органикум Часть2 (1992) -- [ c.310 ]




ПОИСК





Смотрите так же термины и статьи:

Элиминирование Элиминирование



© 2025 chem21.info Реклама на сайте