Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гекситы, образование

    Содимеризация пропилена с этиленом при образовании изопен-тенов осуществляется взаимодействием триэтилалюминия (как источника этилена) с пропиленом в алифатических или ароматических углеводородах, служащих растворителями [120]. Основной продукт реакции — 2-метилбутен-1. Реакция проводится преимущественно при 100—180 °С и под давлением 13—65 кгс м , продолжительность реакции от 30 мин до 6 ч, соотношение триэтилалюминий пропилен = 1 3 8. Наряду с основным продуктом образуются бутены и гексены 2-метилбутен-1 отделяется от них фракционированием. [c.237]


    Тот факт, что даже при применении совершенно сухих исходных веществ всегда образуется свободная серная кислота, указывает, что при сульфоокислении образуется в результате побочной реакции вода. Граф считает причиной образования воды дегидрирование циклогексана в циклогексен цикло гексил суль фон о-в ой перкислотой, оторое протекает по уравнению. [c.484]

    В дальнейшем для более глубокого понимания механизма дегидроциклизации алканов в присутствии оксидных катализаторов был использован [21] кинетический изотопный метод, с помощью которого удалось исключить из приведенной выше схемы ряд стадий (2, 3, 6, 10). Так, в опытах со смесями н-гексан — циклогексан- С удельная радиоактивность циклогексана не уменьшалась, т. е. из гексана не образуется нерадиоактивный циклогексан. Это означает, что последний не является промежуточным продуктом в процессе ароматизации н-гексана. В то же время в опытах со смесями гексан — гексен- С в катализате обнаружено заметное уменьшение мольной радиоактивности гексена, что, очевидно, вызвано разбавлением меченого олефина нерадиоактивным гексеном, образующимся при дегидрировании гексана. Полученный бензол обладал большей мольной радиоактивностью, чем непрореагировавший гексен, что говорит об образовании бензола через гексен [147]. Существенным фактом является появление в катализате меченых гексадиенов (из гемсена- С). Опыты по арома- [c.238]

    I 6-членное кольцо образованное из гексана образованное из гексана -23,3923 -8,0238 2.1392 2.2239 -0.0429 -0.1915 1 -0,001865 0.005473 [c.78]

    Чистый метилэтилкетон из содержащей его фракции можно выделить добавлением к фракции м-гексапа, дающего с метилэтилкетоном азеотропную смесь (см. стр. 108, где метилэтилкетон используется в качестве компонента для образования азеотронной смеси с парафиновыми углеводородами в целях выделения последних из смеси с ароматическими). Отделяющаяся в качестве головного продукта азеотропная смесь метилэтилкетона и w-гексана разделяется затем при помощи воды, в которой метилэтилкетон растворяется. Из водного раствора метилэтилкетон получают в виде азеотропной смеси с водой, из которой затем воду выделяют в форме азеотронной смеси с нентаном. [c.152]

    Давление водорода, ат Образование изомеров гексана, % Подвергалось крекингу (измерено по низкокипящим углеводородам), % [c.519]

    Поведение циклогексана на различных Ni-катализаторах впервые изучено в работах [221, 222]j и далее исследовано достаточно подробно (см., например, [219, 223—226)]. Показано, что наряду с дегидрированием циклогексана в бензол происходит, как и в случае циклопентанов, частичный метанный распад циклогексана путем алкилирования идет образование высших гомологов циклогексана и бензола. В жестких условиях, при повышенном давлении водорода и температуре выше 350 °С, в присутствии Ni/AbOa наблюдался частичный гидрогенолиз циклогексана с образованием незначительных количеств н-гексана [226]. [c.161]


    На основании результатов, полученных при превращениях в токе водорода и гелия пяти изомерных гексанов и метилциклопентана сделан вывод [115], что прн отсутствии в газовой фазе водорода структурная изомеризация алканов проходит только по одному пути — в согласии с механизмом сдвига связей. В токе гелия все названные углеводороды превращаются в бензол. Энергия активации ароматизации н-гексана 42 кДж/моль, остальных углеводородов 71—84 кДж/моль. Полагают [115], что образование бензола из всех изомерных гексанов обусловлено общей лимитирующей стадией — ско  [c.226]

    Изомеризация неразветвленных цепей протекает, как правило, неглубоко, образование углеводородов с четвертичными углеродт ными атомами или с несколькими разветвлениями отстает от термодинамического равновесия и в заметной степени наблюдается тoль o при глубоком превращении. Это легко объясняется положениями карбониево-ионной теории. Так, например, при изомеризации гексана образование 2- и 3-метилпентанов энергетически выгодно, так как в конечном счете вторичный карбониевый ион заменяется третичным  [c.239]

    Чем длиннее углеродная цепь парафинового углеводорода, тем позднее начинается образование сульфурилхлорида. Образование сульфурилхлорида у гексана (по Кропелину с сотрудниками) [7] наступает лишь после введения 2 молей хлора и двуокиси серы и при продолжении олыта все время возрастает пока, наконец, весь хлор не будет израсходован. У высокомолекулярных парафиновых углеводородов также образуется сульфурилхлорид, если реакция длится до тех пор, пока почти каждый третий атом углерода не ваместится, что совпадает с упомянутым выше явлением при сульфохлорировании пропана, содержащего в молекуле 3 атома углерода. [c.391]

    Уже давно стремятся выяснить закономерности замещения водорода хлором в парафиновых углеводородах. При этом почти всегда изучали хлорирование гексана, получаемого из нефти или восстановлением маннита, и гептана, извлекаемого из нефти или масла Pinos sabiniana. Вначале думали, что хлор атакует только конец углеводородной молекулы, т. е. что замещение происходит исключительно в метильной группе. Позднее было твердо установлено, что замещается также водород у второго углеродного атома. Возможным считалось образование и других монохлоралканов, однако, поскольку экспериментальные подтверждения отсутствовали, этот взгляд был отвергнут. С другой стороны, первоначально существовало мнение, что в случае бромирования парафина продукты замещения у первичного атома углерода не образуются, а получаются исключительно вторичные бромиды. [c.533]

    Прохлорировав н-гексан (из маннита) [12] и отщепив спиртовой щелочью хлористый водород от хлористых гексилов, он получил смесь гексиленов, которую оставил на несколько недель стоять в темноте с концентрированной соляной кислотой в хорошо закрытых склянках. При последующей перегонке в головных погонах не оказалось никакого гексилена, так что весь олефин перешел в хлористый алкил, кипевший при 124—125°. Этот хлористый алкил был нагрет с ацетатом свинца и ледяной уксусной кислотой при 125°, причем произошло быстрое взаимодействие. Полученный сложный эфир подвергся омылению, и спирт был разогнан на две фракции, каждую из них окисляли отдельно. Поскольку было установлено только образование уксусной и масляной кислот, пропионовая кислота получалась, очевидно, в количествах, не обнаруживаемых применявшимися методами. Таким образом, вероятность присутствия этилпропилкетона, а следовательно, гексанола-3, была незначительна. Поэтому Шорлеммер мог лишь снова подтвердить то, что нашел уже 7 лет назад, а именно, что при действии хлора на н-гекса.н образуются только первичный и вторичнин хлористые алкилы. [c.536]

    Пренебрегая другими возможными реакциями, оцените минимальную температуру, при которой можно получить 95%-е превращение гексана в бензол. Стандартные свободные энергии образования (в ккал1моль)  [c.57]

    Реакции (изомеризации, циклизации) представленные на рис. 10. параллельно оси абсцисс, протекают на кислотных центрах, а изображенные параллельно оси ординат — на металлических цен — трах гидрирования—дегидрирования. Согласно этой схеме, н — гексан сначала дегидрируется на металлических центрах с образо — ванием н —гексена, который мигрирует к соседнему кислотному це1 тру, где протонизируется с образованием вторичного карбени — евого иона, затем изомеризуется в изогексен или циклизуется в мепилциклопентан с последующей изомеризацией в циклогексан (возможна циклизация изогексена сразу в циклогексан). Последний на металлических центрах дегидрируется с образованием конечного продукта — бензола. Возможны и другие маршруты образования ароматических углеводородов. [c.181]

    Андерсон и Шимомура [182] исследовали превращения метилциклопентана и н-гексана в присутствии Р1-пленки, напыленной в вакууме, при 275—310°С. Считают [182], что гидрогенолиз метилциклопентана проходит через образование промежуточных адсорбированных соединений, строение которых аналогично комплексам А и Б, приведенным на с. 136. Высказывается предположение, что селективность гидрогенолиза в значительной степени зависит от концентрации водорода на поверхности катализатора, что определяет также соотношение адсорбированных комплексов А и Б. Наряду с гидрогено- [c.138]

    Соморджай и соавт. [236—239] для выяснения механизма каталитических превращений углеводородов на ступенчатых поверхностях платины пытались идентифицировать атомные центры монокристаллов Р1, ответственных за разрыв связей С—С, С—Н и Н—Н. Структура и состав поверхности монокристаллов Р1 были исследованы методами Оже-спектроскопии и дифракции медленных электронов. Полученные результаты сопоставлены с каталитическими свойствами Р1 ь реакциях О—Н-обмена, дегидрирования циклогексана в бензол и гидрогенолиза циклогексана с образованием н-гексана. [c.165]


    Роль дегидроизомеризации алкилциклопентанов при образовании аренов специально исследовалась на примерах метил-, этил- и 1,2-диметилциклопентанов [49]. В присутствии Р1/А120з эти углеводороды дегидроизо-меризуются с образованием аренов, подвергаются гидрогенолизу в алканы и частично дегидрируются с образованием циклопентенов и циклопентадиенов. Из метилциклопентана и н-гексана образуются примерно одинаковые количества бензола. Из 1,2-диметилциклопентана выход толуола значительно ниже, а из этилциклопентана примерно в два раза выше, чем из н-гептана. Таким образом, очевидно, что алкилциклопентаны в изученных условиях (Pt/AbOa, 350—520 °С) являются промежуточными продуктами при ароматизации н-алканов. При этом несомненно следует учитывать то обстоятельство, что вклад циклопентанового пути ароматизации алканов в значительной степени зависит от применяемого катализатора (кислотность носителя, природа модификаторов, дисперсность и содержание активной металлической фазы) и условий проведения опыта (температура, газ-носитель, давление и т. д.). [c.195]

    В соответствии со всем изложенным выше показано [109], что в строго идентичных условиях выход метилциклопентана из н-гексана действительно меньше, чем из изогексанов. Выходы метилциклопентана из 2- и 3-ме-тилпентанов практически совпадали, что, по-видимому, обусловлено практически одинаковыми суммарными благоприятными эффектами. Важной особенностью обсуждаемой работы является то, чго опыты проводили в токе Не с непременной обработкой катализатора перед каждым опытом небольшим количеством водорода. Следует отметить, что кроме метилциклопентана в продуктах реакции присутствовали изомерные гексаны, соответст-вуюшие им алкены, бензол и метилциклопентен. Для рассмотрения участия алкенов как промежуточных продуктов Сз-дегидроциклизации 2- и 3-метилпентанов были соответственно проведены две серии опытов с двойными смесями 2-метилпентан — 2-метилпентены- С и З-метилпентан- С — 3-метилпентены (рис. 41). Анализ кинетических данных (см. рис. 41) привел к заключению [109], что образование метилциклопентана из изомерных гексанов на Pt/ в атмосфере гелия (с предварительной обработкой катализатора водородом) при 310°С происходит двумя параллельными путями 1) через промежуточную стадию образования алкенов и 2) непосредственной циклизацией исходного алкана. При этом также отмечается, что в названных условиях различие в строении 2- и 3-метилпентанов мало влияет на соотн ение путей их Сз-дегидроциклизации. [c.221]

    При исследовании поведения в присутствии Pt-черни н-гексана и 2-метилпентана в токе смесей гелия и водорода Паал и Тетени показали [114, 115], что скорость реакций Сз-дегидроциклизации — изомеризации при добавлении водорода к гелию сначала увеличивается, а затем, пройдя через максимум, уменьшается (рис. 43). Та же закономерность наблюдается при преврашении н-гексана в бензол. Рост активности катализатора при добавлении водорода в газ-носитель объясняется [114, 115] замедлением дезактивации катализатора за счет удаления с поверхности последнего необратимо адсорбированных образований , являющихся предшественниками углистых слоев на металле. При дальнейшем увеличении концентрации водорода в газовой фазе происходит частичное вытеснение углеводорода с поверхности металла, так как водород расщепляет поверхностные связи С—М, что в свою очередь приводит к уменьшению обшей степени превращения. Таким образом объясняется появление максимумов на кривых конверсия углеводорода — содержание Из в газе-носителе. [c.226]

    Вместе с тем Паал и Тетени [44] показали, что в присутствии некоторых металлов первичными продуктами ароматизации н-гексана также являются гексены. В дальнейшем ими было установлено [148—150], что подобно оксидным катализаторам металлические Pt и Ni образуют в ходе ароматизации н-гексана алкадиены и алкатриены, которые претерпевают последующую циклизацию и дегидрирование с образованием аренов. Одновременно с этим с помощью углеводородов, меченных показано, что ни циклогексан, ни циклогексен на стадии циклизации не образуются. К близким выводам о путях ароматизации н-алканов в присутствии Р1/А1гОз, Pt/ и Pd/AbOa пришли авторы работ [14, 18, 151]. [c.239]

    Pd/АЬОз (см, рис. 47) показывают, что на этом катализаторе, как и на Pt/AbOs, образование бензола из л-гексана происходит, по-видимому, по схеме последовательного дегидрирования [49]  [c.243]

    Несомненный интерес представляет исследо1вание механизма Сб-дегидроциклизации н-гексана в присутствии Pt, нанесенной на некислый АЬОз [70]. Считают, что ароматизация н-гексана проходит двумя путями во-первых, через последовательное образование алкенов, алкадиенов, алкатриенов с последующей термической циклизацией последних и, во-вторых, путем прямой ароматизации к-гексана. При этом отмечается важная роль водорода при протекании реакции и прямая зависимость механизма ароматизации от парциального давления водорода в реакционной смеси. [c.243]

    В работе [157] описывается приготовление и характеристика частично кристаллизованных пористых стекол с бидисперсным распределением размера пор. Показано, что Pt-катализаторы, нанесенные на такие пористые стекла, являются активными и селективными катализаторами образования бензола при Сб-дегидроциклизации алканов. При исследовании каталитических и физических свойств нанесенных на Si02 биметаллических систем (Pt—Au, Pt—Sn, Rh— u) прослежена определенная взаимосвязь между дисперсностью металлической фазы (рентгеновский метод) и активностью катализаторов в реакциях С5- и Се-дегидроциклизации н-гексана [158]. [c.244]

    Закономерности превращений ряда н- и изоалканов над алюмоплатинояыми катализаторами с содержанием Pt 0,1—0,6% при 0°С (и выше) и давлении водорода 1,1—2,1 МПа исследовали Синфельт с сотр. [42, 160]. Найдено, что при увеличении размеров молекулы -алканов состава Се—Сз скорость дегидроциклизации заметно возрастает суммарная скорость s- и Сб-дегидроциклизации м-октана примерно в 2,5 раза больше суммарной скорости дегидроциклизации н-гексана. В работах подчеркивается бифункциональный характер применяемого катализатора. Сделан вывод о протекании дегидроциклизации через образование алкенильного карбениевого иона  [c.245]

    В работе [164] исследовано влияние добавки хрома к алюмоплатиновому катализатору [Pt r = 5 l (по массе)] на механизм дегидроциклизации н-гексана. Авторы пришли к заключению, что ароматизация н-гекса-на на алюмоплатиновом и алюмоплатинохромовом катализаторах протекает по сходному механизму. Основными направлениями превращений н-гексана на обоих катализаторах являются гидрокрекинг, дегидрирование, скелетная изомеризация, Сб-дегидроциклизация и ароматизация. На основании кинетических данных высказано предположение об образовании при введении добавки хрома в алюмоплатиновый катализатор большого числа слабоактивных центров. [c.247]

    Результаты экспериментального исследования самовоспламенения н-гексано-воздушной смеси [21] свидетельствует о том, что в начальной стадии окисления при 320—430 °С наблюдается образование пероксидных соединений. Далее отмечается заметное возрастание температуры и давления, сопровождающееся появлением холоднопламенного свечения, максимум интенсивности которого совпадает с максимумом концентрации НСНО в газе. В спектре излучения голубого пламени помимо излучения, обусловленного возбужденными молекулами формальдегида, [c.133]

    Продукты, образуюшреся по уравнению, приведенному в п. а , не являются главными при осуществлении реакции Вюрца. Выходы парафинов ожидаемого строения обычно малы, хотя в отдельных случаях сообщалось и о хороших выходах. Так, при взаимодействии изоамилбромида в эфирном растворе с Na-проволокой удается достигнуть 72 %-ного выхода 2,7-диметилоктана [125]. Полагают, что начальной стадией реакции является образование свободных радикалов [111]. Дополнительное подтверждение взгляда об образовании свободных радикалов при реакции Вюрца получено при цроведении реакции 2,2-диметил-1-хлорпроиана с натрием выход 2,2,5,5-тетраметил гексана (ожидаемый по уравнению реакции Вюрца продукт) мал, неопентана 36%, 1,1-диметилциклопропана 25% [138]. Тюо и Гриньяр [129] при действии натрия на 1-бромоктан достигали 60%-ного выхода гексадекана, но в некоторых других случаях наблюдали лишь образование вторичных продуктов. Они пришли к заключению, что во время протекания реакции Вюрца между щелочными металлами и алкилгалогенидами вероятно образование свободных радикалов, поскольку трудно получить чистые парафины из-за образования вторичных продуктов. Они, а также другие авторы считают, что реакция Гриньяра (типа конденсации Вюрца) является более пригодным препаративным методом. [c.402]

    Примечание В( личины энергий образования пириичных, вторичных и третичных ионов карбония иэ к-гексана и 2-метплпентана, могут быть использованы для всех высших парафинов, кроме сильно разветвленных структур с четвертичными атомами углерода. [c.123]


Смотреть страницы где упоминается термин Гекситы, образование: [c.242]    [c.61]    [c.242]    [c.146]    [c.67]    [c.193]    [c.127]    [c.42]    [c.167]    [c.169]    [c.206]    [c.208]    [c.214]    [c.220]    [c.222]    [c.225]    [c.227]    [c.228]    [c.133]    [c.439]   
Алюмогидрид лития и его применение в органической химии (1957) -- [ c.55 , c.70 ]




ПОИСК





Смотрите так же термины и статьи:

Гекса иен

Гексаи

Гексан

Гексеи

Гексил



© 2025 chem21.info Реклама на сайте