Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеофильное замещение присоединение Adj

    В отсутствие галогенных заместителей в а- и у-положениях пиридиновый цикл менее активен в реакциях с нуклеофилами кроме того, из-за отсутствия уходящей группы невозможно нуклеофильное замещение. Присоединение нуклеофилов, тем не менее, происходит, однако образующиеся при этом дигидро-пиридины требуют дальнейшего окисления для удаления гидрид-иона и завершения процесса замещения. Такие процессы, например с амидами металлов или металлоорганическими реагентами, протекают селективно по а-положе-нию, вероятно, потому, что первоначально образуется комплекс, включающий взаимодействие кольцевого атома азота и катиона металла, связанного с реаген- [c.97]


    При гетеролитическом образовании связи атом, имеющий пару электронов, за счет которой образуется ковалентная связь (т. е. взаимодействующий с электронодефицитным атомом), называют нуклеофильным и реакции с участием таких реагентов рассматривают как реакции нуклеофильного замещения, присоединения или отщепления. Частица, предоставляющая свободную орбиталь для образования связи, называется электрофильной, и реакции с участием таких реагентов рассматривают как электрофильные. [c.206]

    Укажите среди следующих реакций реакции электрофильного, нуклеофильного, радикального присоединения и замещения  [c.111]

    Для нафти-лина и его производных свойственны реакции 1) электрофильного замещения 2) нуклеофильного замещения 3) перегруппировки 4) электрофильного присоединения (типа Дильса—Альдера). [c.275]

    Нами рассмотрены основные черты бимолекулярного нуклеофильного замещения. Существует иной механизм замещения, когда отщепление группы X и присоединение 2 совершаются не одновременно, а разделены во времени  [c.191]

    В результате реакций, обсуждающихся в этом разделе, образуется новая углерод-углеродная связь. По отношению к ароматическому субстрату они представляют собой электрофильное замещение, так как кольцо атакуется положительной частицей. По традиции их относят к этому типу реакций. Однако по отношению к электрофилу большинство из этих реакций являются нуклеофильным замещением, и все, что говорилось в гл. 10 о реакциях нуклеофильного замещения, справедливо и в данных случаях. Некоторые из них могут не быть реакциями замещения по отношению к реагенту так, например, при использовании в качестве реагента олефинов — это присоединение к двойной углерод-углеродной связи (реакция 11-13) или присоединение по связи С = 0 (реакция 11-24). [c.348]

    Имеются и другие доказательства реализации механизмов с промежуточным образованием ионов типа 2. Ранее уже указывалось (т. 2, разд. 10.5), что ионы бромония были зарегистрированы как стабильные соединения в реакциях нуклеофильного замещения с анхимерным содействием брома. Такие ионы были выделены также и в реакциях, включающих присоединение Вг+ к двойной связи [8]. Дополнительным доказательством этого механизма служит следующее. Если два атома брома подходят к двойной связи с разных сторон плоскости молеку-кулы олефина, то чрезвычайно маловероятно, чтобы источником этих двух атомов была одна и та же молекула брома.. [c.136]


    Этот механизм ничем не отличается от механизма простого электрофильного присоединения, описанного в разд. 15.1, за исключением того, что знаки зарядов обратные. Если олефин содержит хорошую уходящую группу (по определению, данному для нуклеофильного замещения в т. 2, разд. 10.13), побочно может идти замещение (это нуклеофильное замещение в винильных субстратах, т. 2, разд. 10.10). Имеются по крайней мере еще пять типов побочных реакций, в которые могут вступать интермедиаты, аналогичные 8 [33]. [c.140]

    Факторы, оказывающие влияние на реакционную способность кратных связей углерод — гетероатом в реакциях присоединения, аналогичны факторам, действующим в тетраэдрическом механизме нуклеофильного замещения [8]. Если А и (или) В — электронодонорные группы, скорость реакций снижается, а электроноакцепторные заместители способствуют ускорению реакций. Это означает, что альдегиды более реакционноспособны, чем кетоны. Арильные группы оказываются несколько дезактивирующими по сравнению с алкильными вследствие резонанса в молекуле субстрата, который невозможен при переходе к интермедиату  [c.323]

    Уходящей группой не обязательно является Н2О. Ею может быть любая частица, которая при уходе образует карбо-катнон, включая N2 алифатических диазониевых ионов [77] (см. раздел, посвященный уходящим группам в нуклеофильном замещении, т. 2, разд. 10.13). Перегруппировки могут происходить и тогда, когда карбокатионы образуются при присоединении протона или другой положительно заряженной частицы к двойной связи. Даже алканы дают продукты перегруппировки при нагревании с кислотами Льюиса при условии, что первоначально образуются такие же карбокатионы. [c.130]

    Изомеризация углеродного скелета у соединений терпенового ряда. Различают камфеиовые перегруппировки первого рода и второго рода, Камфеновая перегруппировка первого рода (называют также перегруппировкой ВАГНЕРА — МЕЕРВЕИНА) — это изомеризация углеродного скелета терпенов в процессе реакций нуклеофильного замещения, присоединения или элиминирования. Например, превращение камфена в изоборннлхлорид  [c.221]

    В промышленном органическом синтезе широко используются реакции, протекающие с участием карбанионов нуклеофильное замещение, присоединение и конденсация по карбонильной группе, анионная димеризация и полимеризахщя и др. [c.394]

    Г. Л. Меервейн исследовал механизм камфеновой перегруппировки первого рода. Получил бицикло [3, 3,1] нонан. Изомеризация углеродного скелета молекул циклических соединений в процессе нуклеофильного замещения, присоединения или отщепления получила наименование перегруппировки Вагнера — Меервейна. [c.669]

    Изомеризация углеродного скелета молекул циклических соединений в процессе реакций нуклеофильного замещения, присоединения или элиминирования, сопровождающаяся миграцией алкильной или арильной группы к соседнему атому С — катионному центру (камфеновая перегруппировка первого рода)  [c.99]

    Раскрытие окисного кольца представляет собой реакцию нуклеофильного замещения при атоме углерода кольца, причем замещается атом кислорода цикла. Замещение может протекать с образованием оксониевого производного или без него. Если реакция идет через образование оксониевого производного, то в возникающем оксониевом комплексе окисный цикл более реакционноспособен, чем в самой окиси, вследствие чего он легко раскрывается с последующим присоединением реагента [77]. [c.40]

    Реакция этерификации представляет собой типичное кислотокатализируемое нуклеофильное замещение по ацильному углеродному атому и включает присоединение-отщепление протона  [c.107]

    Таким образом, в реакции конденсации участвуют карбонильный компонент, имеющий частичный положительный заряд на атоме углерода карбонильной группы, и метиленовый компонент, имеющий активированные атомы водорода в качестве катализатора В используют основание, способное отщепить протон от метиленового компонента. При этом возможно а) нуклеофильное присоединение метнленового компонента к карбонильной группе с образованием спирта, б) нуклеофильное замещение атома кислорода карбонильной группы с образованием алкена и последующее нуклеофильное присоединение к активированной кратной связи этого алкена второй молекулы метиленового компонента. В обще / виде реакцию можно изобразить следующим образом  [c.188]

    При этом связь группы N с метиленовой (метинной) группой становится более прочной и уменьшается дефицит электронной плотности на входящем в нее атоме углерода. Это затрудняет нуклеофильное замещение группы GN в соединениях такого типа. У а-алкилнитрилов, где подвижность а-водородного атома снижена электронодонорной алкильной группой, наряду с реакцией присоединения возможна и реакция замещения группы N  [c.298]


    Ароматичность, правило Хюккеля. Электрофильные и нуклеофильные реакции. Электронодонорность и электроноакценторность заместителей. Индуктивный эффект и эффект сопряжения. Теория замещения, ориентанты I и И рода. Реакции электрофильного и нуклеофильного замещения, реакции присоединения. Переходные состояния. Согласованная и несогласованная ориентация. Спектры (ПМР, ИК и УФ) ароматических соединений. [c.250]

    Амины — это продукты замещения в молекуле аммиака атомон водорода алкильными радикалами. Амины — типичные нуклеофилы, способные атаковать электронодефицитные центры, что в конечном итоге приводит к присоединению по кратной связи (в альдегидах и кетонах) или к нуклеофильному замещению (в галоген-алканах, производных кислот, спиртах)  [c.53]

    Следовательно, та часть оригинальной реакции, которая приводит к сохранению конфигурации, представляет собой две последовательные реакции Sn2, а не результат какого-либо пограничного поведения [61]. В другом исследовании Стрейтвизер, Уэлш и Вольф показали, что рацемизация, сопровождающая инверсию при ацетолизе оптически активного 2-октилтозилата, является результатом реакций иных, чем действительное сольволи-тическое замещение, а именно — реакции 2-октилацетата с образующейся п-толуолсульфоновой кислотой, присоединения уксусной кислоты к 2-октену (получающемуся из субстрата по конкурентной реакции элиминирования) и рацемизации исходного тозилата [62]. Само нуклеофильное замещение происходит практически с полным обращением конфигурации. [c.28]

    Нуклеофильное замещение у винильного атома углерода протекает с трудом (см. разд. 10.11), но тем не менее известно много примеров подобных реакций. Наиболее часто эти реакции идут по тетраэдрическому механизму или по родственному механизму присоединения — отщепления. Оба эти механизма не могут реализоваться с насыщенными субстратами. Механизм присоединения — отщепления был продемонстрирован для реакции 1,1-дихлороэтилена (74) и Аг5 , катализируемой этилат-ионами [199]. В результате реакции было получено не 1,1-дитио-феноксипроизводное 75, а перегруппированное соединение 76. Выделение соединений 77 и 78 показало, что реакция происходит по механизму присоединения — отщепления. На первой стадии Лг5Н присоединяется по двойной связи (нуклеофильное присоединение, т. 3, разд. 15.2, приводящее к насыщенному продукту 77). Вторая стадия представляет собой реакцию Е2-элими- [c.61]

    Основания Манниха (см. т. 3, реакцию 16-16) типа НСОСНгСНгНКг аналогично вступают в реакции нуклеофильного замещения по механизму отщепления — присоединения (см., например, [223]). Нуклеофил замещает группу NR2. [c.65]

    При использовании моноперянтарной кислоты можно добиться того же результата в одну стадию [552]. Общее анти-присоеди-нение можно провести по методу Прево. По этому методу олефин обрабатывают иодом и бензоатом серебра, взятыми в молярном соотношении 1 2. Первоначально происходит антиприсоединение, что дает р-галогенозамещенный бензоат 68. Это соединение можно выделить, поэтому реакция представляет собой присоединение ЮСОРЬ. Однако в обычных условиях проведения реакции атом иода замещается на вторую группу РЬСОО. Это реакция нуклеофильного замещения, идущая по механизму с участием соседней группы (т. 2, разд. 10.5), поэтому сохраняется взаимное анги-расположение этих групп  [c.224]

    На стадии 2 электрофилом является протон. Почти во всех реакциях, рассматриваемых в данной главе, электрофильная атака происходит либо атомом водорода, либо атомом углерода. Отметим, что стадия 1 точно соответствует стадии 1 тетраэдрического механизма нуклеофильного замещения у карбонильного атома углерода (т. 2, разд. 10.9), поэтому можно ожидать, что замещение будет конкурировать с присоединением. Однако такое встречается редко. Если А и В — это Н, К или Аг, то субстрат представляет собой альдегид или кетон, а они почти никогда не вступают в реакции замещения, так как Н.КиАг — очень плохие уходящие группы. В случае кислот и их производных (Б = ОН, ОК, ЫНг и т. д.) присоединение происходит редко, так как перечисленные группы представляют собой хорошие уходящие группы. Таким образом, в зависимости от природы [c.322]

    По реакции Манниха формальдегид (или иногда другой альдегид) вступают в конденсацию с аммиаком, взятым в виде соли, и соединением, содержащим активный водород [158]. Формально этот процесс можно рассматривать как присоединение аммиака к формальдегиду с образованием H2N H2OH с последующим нуклеофильным замещением. Вместо солей аммония [c.344]

    Часто цианид-ионом обрабатывают продукт присоединения бисульфита, и тогда это реакция нуклеофильного замещения. Этот метод особенно полезен в случае ароматических альдегидов, поскольку он позволяет избежать конкуренции бензоиновой конденсации. При желании цианогидрин можно гидролизовать in situ до соответствующей а-гидроксикислоты. Эта реакция играет важную роль в методе Килиани—Фишера удлинения углеродной цепи сахаров. [c.410]

    Возможны два пути реакции. Вначале может образоваться цианогидрин, а затем происходит нуклеофильное замещение (т. 2, реакция 10-48), либо в первую очередь идет присоединение аммиака или амина, дающее амин (реакция 16-13), к которому и присоединяется цианид натрия (реакция 16-51) [534]. [c.411]

    При обработке основаниями а-дикетоны дают соли а-гид-роксикислот. Эта реакция называется бензильной перегруппировкой [131]. Хотя реакция обычно осуществляется на арильных производных, ее можно применить и к алифатическим ди-кетонам и а-кетоальдегидам. Использование алкоксид-ионов вместо ОН приводит к соответствующим сложным эфирам [132], хотя алкоксид-ионы, которые быстро окисляются (такие, как 0Е1- и ОСИМег ), здесь не используют, так как они восстанавливают бензил в бензоин. Ароксид-ионы (ОАг") для этой реакции не являются достаточно сильными основаниями. Механизм перегруппировки в основном аналогичен механизмам реакций 18-1—18-4, но есть и различия. Мигрирующая группа не двигается к углероду с открытым секстетом. Углерод имеет октет, но может принять группу с парой электронов за счет смещения я-электронов связи С = 0 к кислороду. Первой стадией будет атака карбонильной группы основанием, т. е. та же стадия, что и первая стадия тетраэдрического механизма нуклеофильного замещения (т. 2, разд. 10.9) и многих случаев присоединения по связи С = 0 (т. 2, гл. 16)  [c.141]


Смотреть страницы где упоминается термин Нуклеофильное замещение присоединение Adj: [c.36]    [c.36]    [c.15]    [c.25]    [c.103]    [c.296]    [c.286]    [c.5]    [c.178]    [c.305]    [c.450]    [c.133]    [c.148]    [c.225]    [c.227]    [c.329]    [c.386]    [c.157]    [c.179]   
Курс органической химии (1979) -- [ c.48 , c.88 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение нуклеофильное

Механизм нуклеофильного замещения в ароматическом ряду, включающий отщепление — присоединение

Механизм элиминирования — присоединения при нуклеофильном замещении в ароматическом ряду. Дегидробензол

Нуклеофильное замещение нуклеофильного присоединения

Нуклеофильное замещение нуклеофильного присоединения

Нуклеофильное замещение сравнение с присоединением

Нуклеофильное замещение элиминирования присоединения механизм

Нуклеофильное присоединение и замещение кислорода карбонильных групп лигнина

Присоединение нуклеофильное

Присоединение нуклеофильное Нуклеофильное присоединение

Реакции замещения нуклеофильные SNi присоединения в ряду ацетиленов



© 2025 chem21.info Реклама на сайте