Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сепараторы в производстве

    Разделение эмульсии, состоящей из двух жидкостей с близкими плотностями и высокой вязкостью, путем отстаивания может оказаться очень затрудненным и привести к неэкономичным размерам отстойников. В некоторых случаях процесс экстракции должен быть проведен быстро из-за неблагоприятного влияния первичного растворителя (вещества А) на экстрагируемое вещество (например в фармацевтической промышленности при производстве пенициллина). Тогда для разделения следует применять сепараторы, которые обеспечивают наиболее четкое и быстрое разделение жидкостей. [c.284]


    А—приготовление угольной пасты Б—жидкофазная гидрогенизация В—предварительное гидрирование Г—бензинирование или расщепление Д—стабилизация Е—получение этана Ж—получение пропана 3—осушка газа И—получение бутана К—абсорбционная очистка газа (удаление аммиака) Л—производство газового бензина М—газоочистка (удаление СО и Н З) И—алкацидная очистка, молотковая дробилка 2—вращающаяся сушилка 3—бункер для сухого (4% НаО) угля с катализатором 4 —бак для затирочного масла 5—ластовый насос высокого давления 6—регенератор (теплообменник) / сепаратор Л—газоподогреватель 9—реактор 10—уровнемер 11—горячий сепаратор 12—центрифуга 3—печь полукоксования шлама 14—емкости для дросселирования 15—холодильник 16—продуктовый сепаратор 17—водоотделитель 18—циркуляционный насос 19—масляный абсорбер 20—детандер 21—алкацидный абсорбер 22—реактор с окисью железа (280°) для удаления сероокиси углерода 23—сборник среднего масла 24—дистилляционная колонна 25—водный абсорбер 26—бак для среднего масла 27—электрический подогреватель сборник бензина 29—емкости для среднего масла Б  [c.35]

    Очистка циркуляционного водородсодержащего газа, а также углеводородсодержащего газа от сероводорода происходит в колоннах (абсорберах) 10— 15%-ным моноэтаноламином. В колонну углеводородный газ поступает снизу из сепараторов. Навстречу ему, противотоком, движется раствор моноэтаноламина. Очищенный газ поступает в каплеотбойник, а затем в компрессор и далее после дросселирования до 0,4 МПа выводится из установки. Десорбция сероводорода из насыщенного им раствора моноэтаноламина происходит в десорбере. После десорбере сероводород вместе с парами воды поступает в холодильник, сепаратор, а затем газ направляется в производство серной кислоты или на факел. - [c.267]

    Бункера, технологическое оборудование, трубопроводы пневмотранспорта, пылезаборные узлы и сепараторы и другое оборудование, связанное с приемом, переработкой и перемещением сыпучих материалов, являющихся горючими диэлектриками, должны быть защищены от статического электричества. Заземление электрооборудования и защита от статического электричества оборудования пневмотранспорта должны быть выполнены с учетом требований, изложенных в Указаниях по проектированию силового электрооборудования промышленных предприятий , и Правил защиты от статического электричества в производстве химической, нефтехимической и нефтеперерабатывающей промышленности . [c.276]


    Общие сведения. Удельная производительность грохотов при классификации материалов с размером частиц мепее 1 мм весьма низкая. Такие материалы рационально сортировать в воздушных сепараторах, в которых более крупные частицы выпадают из потока под действием сил тяжести или центробежных сил, а мелкие — выносятся потоком воздуха в осадительные устройства. Регулируя скорость потока, можно варьировать размер выносимых частиц. Воздушные сепараторы широко применяют в помольных устройствах производства фосфоритной муки, извести, пигментов. При использовании горячих газов в них можно совмещать сортировку с сушкой материалов. [c.222]

    Производство фенолоформальдегидных смол осуществляется периодически и непрерывным методом. В качестве варочного котла— реактора-—в периодическом методе применяются цилиндрический аппарат, изготовленный из легированной стали, биметалла или никеля, вместимостью 5—15 м со сферическим дном, в котором имеется сливной штуцер с краном или запорным устройством для выпуска готовой смолы. В крышке расположен загрузочный дюк и смотровые стекла. Реактор, работающий в режиме, близком к полному смешению, снабжен мешалкой якорного типа и водяной рубашкой для подогрева (охлаждения) реакционной смеси. Для непрерывной поликонденсации (рис. 97) используют реакторы идеального смешения. Аппарат представляет собой колонну, состоящую нз расположенных одна над другой секций (рис. 98). Мешалки всех секций имеют общий вал и приводятся в движение От одного двигателя. Все исходные вещества поступают в колонну смешения при атмосферном давлении и 95—98°С. Образовавшаяся смола отделяется от надсмольной воды в сепараторе и направляется на сушку, а затем через смолоприемник на охлаждение. [c.220]

    Для быстрой подачи воды в сбросную трубу рекомендуется применять трубки Вентури, присоединенные к баку с водой. Это устройство для впрыскивания воды вполне удовлетворительно работало около пяти лет на реакторах и сепараторах производства полиэтилена. [c.109]

    Развитие электрохимической промышленности, происходящее в ходе научно-технической революции, протекает по двум направлениям 1) совершенствуются электролизеры для производства важнейших химических продуктов, растут их размеры и мощность 2) создаются новые виды электрохимической продукции. И то и другое в значительной степени зависит от качества пористых перегородок и мембран, применяемых для отделения друг от друга продуктов электролиза (диафрагмы, мембраны) или электродов разного знака заряда (сепараторы). Производство различных пористых перегородок само превратилось в крупную отрасль химической промышленности  [c.3]

    При использовании этой схемы сжигания печных газов в производстве желтого фосфора сепараторы не применяют, что обусловлено содержанием элементарного фосфора в сбросных газах и низким давлением этих газов перед факелом. При этом не следует также подавать пар или воду в пламя горелки. Для сжигания сбросных газов, содержащих твердые частицы (пыль) или смолистые вещества, лабиринтные уплотнения устанавливать не рекомендуется. [c.237]

    В пределах основного производства факельная линия была уложена с уклоном в сторону установок А -я Б. Линии стравливания газов из сепаратора 1 установки А, сепаратора 2 установки Бис установки В были подключены к нижней части факельной линии диаметром 600—700 мм. [c.156]

    По первому варианту (рис. 5.6) сбрасываемые газы из трубопровода направляют через сепаратор 1 на сжигание в факельную трубу 2. Конденсат из сепаратора возвращают в производство или сливают в канализацию. Факельная труба оснащается дежурными 3 и запальными 4 горелками. Такую систему применяют, когда давление на технологических установках недостаточно для подачи факельного газа в газгольдер или когда газы не подлежат утилизации, а также когда газгольдеры заполнены. [c.303]

    Пример V-1. С использованием рассмотренного метода необходимо разработать оптимальную технологическую структуру взаимосвязей между реактором и сепаратором для некоторого химического производства. [c.219]

    Самыми совершенными, но и наиболее дорогими являются вертикальные сепараторы. Они отвечают почти всем требованиям производства, поэтому их рекомендуется устанавливать тогда, когда требуется гарантированное отделение жидкости от газа. Даже в тех случаях, когда нагрузка аппарата по жидкости невелика и его размеры малы, выгодно устанавливать вертикальный сепаратор, так как в обш ей стоимости обустройства промысла затраты на него незначительны. Если отношение газ—жидкость мало, т. е. в потоке содержится много жидкости, всегда рекомендуется устанавливать вертикальный сепаратор. [c.84]

    Все сепараторы проектируются на улавливание из газа определенного объема жидкости. Однако опыт показывает, что необходимо предусматривать некоторый запас емкости аппарата на случай внезапного выноса больших количеств жидкости из скважин или других аппаратов, поэтому емкость сепаратора должна определяться с учетом его стоимости и особенностей производства. Все стандартные сепараторы различаются между собой объемами емкости для накопления жидкости. [c.84]


    Другие системы, например, одиночные аппараты с мешалками, система смеситель—сепаратор и каскады таких аппаратов, также широко распространены в технологических схемах химических производств. Методы расчета всех указанных систем различны и зависят от выбранной модели, отражающей режим движения жидкости в аппарате, относительной скорости химической реакции и процесса переноса массы и от растворимости активных компонентов каждой системы. [c.381]

    Ячейки, соединенные последовательно, представляют собой биполярную конструкцию, в которой все промежуточные электроды работают биполярно (т. е., с одной стороны, как анод, а с другой—как катод) и лишь крайние электроды работают монополярно к крайним монополярным электродам подведен ток. В наиболее мощных электролизерах (например, советский электролизер ФВ-500 производительностью 500 м ч Нг) число биполярных ячеек составляет 160 н более. Электролит циркулирует между электролизером и сепаратором, в котором от жидкости отделяются газообразные продукты электролиза — водород и кислород (по отдельности). Водород и кислород, выделенные в сепараторе, присоединяются к основным газовым потокам, выходящим из электролизера, а электролит вновь возвращается в электролизер. Для электролизера ФВ-500 затраты 3 на производство 1 м Н можно онредел]1ть по формуле [c.81]

    В качестве примера возможного эффективного использования разработанной установки для обработки газов рассмотрим очистку природного газа от жидких углеводородов с помощью трехпоточной ВТ с тангенциальным закручивающим устройством. Промышленную установку очистки природного газа от высших углеводородов производительностью 5000 нм ч применяли на агрегате производства аммиака азотнотукового завода. Установка включала только трехпоточную ВТ, которую использовали как сепаратор сконденсированных углеводородов. Принципиальное отличие трехпоточной ВТ от обычной противоточной заключалось в возможности отбора жидких углеводородов в непосредственной близости от соплового ввода. Это позволяло практически полностью предотвращать испарение жидких углеводородов в горячем конце ВТ. [c.95]

    Как уже отмечалось, описанный выше конденсатор создавали применительно к фракционному выделению из реакционного газового потока сублимирующихся продуктов в производстве ПМДА. Используя хладоагенты с разной температурой и располагая последовательно конденсаторы-сепараторы, можно достичь фракционного выделения продуктов. На рис. 2.20 приведена технологическая схема узла сублимационного объемно-центробежного выделения ПМДА-сырца из реакционного газа совместно с узлом санитарной термокаталитической очистки отходящего газа [9, 43]. После котла-утилизатора реакционный газ I последовательно проходил три ступени выделения ПМДА-сырца в вихревых паро-пылегазовых конденсаторах-сепараторах (1-3), описанных выше. После третьей ступени отходящий газ II поступал на узел санитарной очистки, описание которого приведено ниже. [c.112]

    Внедрение вихревого сепаратора для отделения эпихлоргидрина при производстве эпоксидной смолы Известно, что вихревые сепараторы позволяют проводить химико-технологические процессы с большей эффективностью. Причем энергия потока обрабатываемой среды бывает достаточной для создания эффективного вихревого режима течения. С учетом того, что в последние годы стоимость энергии резко возрастает, разработка более экономичных и перспективных конструкций для технологических процессов на принципах кавитационно-вихревого воздействия очень актуальна. [c.270]

    На рис. 5.10 показана конструкция двухкамерного вихревого сепаратора, предназначенного для извлечения эпихлоргидрина (ЭХГ) из сточной воды производства эпоксидной смолы 2, 6 — входная и выходная камеры 7 — сменная разделяющая шайба с отверстием (сопло) 1,4 — входной и выходной тангенциальные каналы  [c.270]

    При опытно-промышленных испытаниях в производстве эпоксидной смолы (Уфа, Химпром ) двухкамерного вихревого сепаратора достигнуто извлечение ЭХГ из сточной воды до 0,85%. Практическое внедрение сепаратора может быть проведено без остановки основного технологического процесса при минимальных затратах. Наиболее эффективной считается эксплуатация аппарата при часовой производительности 3,5 м (диаметр сопла 40-50 мм) и температуре порядка 100°С. Содержание ЭХГ в очищенной воде уменьшается в два раза по сравнению с существующей технологией (через фазоразделитель). [c.271]

    РИС. ХП-3. Технологическая установка производства технического углерода I — влагоиспаритель 2 — пеноотделитель 3 — центробежный насос 4 — беспламенный подогреватель 5. 11. 18. 24, 32 — фильтры 6 — вентиляторы ы калорифер 15 — инерционный сепаратор 16 — мнкроизмельчитель 20 — бункер-уплотнитель 21 — смесители-грану  [c.108]

    Промышленная установка очистки природного газа от высших углеводородов производительностью 5 тыс. нм ч применена на агрегате производства аммиака азотнотукового завода. Трехпоточная вихревая труба использована как сепаратор сконденсированных углеводородов. Принципиальное отличие трехпоточной вихревой трубы от обычной противопоточной заключается в возможности отбора жидких углеводородов. Вследствие низкой термодинамической температуры происходит накопление капель, которые в виде конденсата выводятся через третий поток в конденсатосборник, расположенный на трубе горячего потока. [c.309]

    На рис. 1.64 представлена схема типовой мельницы Пульвок-рон ударно-отражательного действия со встроенным внутрь корпуса машины сепараторов (производство HIA и Германии). Мельница работает следующим образом. [c.111]

    Раствор МЭА, насыщенный сероводородом, из абсорберов для очистки газов поступает в дегазатор, где при снижении давления пз раствора МЭА выделяются растворенные газообразные углеводороды и бензин. Выделившийся бензин направляется в стабилизационную колонну. Дегазированный насыщенный раствор МЭА, предварительно нагретый в теплообменниках, поступает в отгонную колонну, температурный режим в которой поддерживается циркулирующим через термосифонный паровой рибойлер раствором МЭА. Пары воды и сероводорода, выходящие из колонны, охлаждаются в воздушном конденсаторе-холодильнике, доохлаждаются в водяном холодильнике, после чего разделяются в сепараторе, где также предусмотрен отстой бензина и его ВЫВОДЕ стабилизационную колонну. Сероводород из сепаратора направляется на производство серной кислоты илн элементарной серы. Из нижней части колонны выводится регенерированный раствор МЭА, который после последовательного охлаждения в теплообменниках, воздушном и водяном холодильниках вновь возвращается в цикл. Для удаления механических примесей из насыщенного раствора МЭА предусмотрено фильтрование части раствора. [c.56]

    Для покрытия полов во взрывоопасных производствах необходимо применять материалы, не искрящие при ударах стальными и другими твердыми материалами. Металлические площадки и ступени лестниц также должны быть покрыты неискрящими материалами. В отдельных случаях места прохода и обслуживания машин и аппаратов покрывают специальными резиновыми ковриками. Для предотвращения возникновения искр (при ударах об аппараты), случайно попавших в перерабатываемую массу металлических и других твердых предметов, в некоторых случаях (при размоле, смешении, перемешивании и др.) устанавливают дополнительно специальные магнитные или воздушные сепараторы. [c.353]

    Из циклонов 10 технический углерод вентилятором 14 подается на гранулирование. Пневмотранспорт осуществляется подогретым в калорифере 13 воздухом или отходящим газом производства. В системе пневмотранспорта установлены инерционный сепаратор 15 и микроизмельчитель 16 для очистки технического углерода от посторонних включений и измельчения спекшихся углеродных частиц. [c.110]

    II - сепаратор сероводорода 12 - паровой подогреватель 13 - десорбер МЭА 14, 17 - емкости МЭА 15 - абсорбер 16 - отстойник раствора МЭА 18 - абсорбер для осушки газа 19 - поршневой компрессор 20 - сепаратор-отстойник 21 - насос для подачи активатора 22 - емкость активатора 23 каплеуловитель / - сырье после отстоя II - активатор III - диэтиленгликоль IV - свежий водород V - бензин VI - компонент зимнего дизельного топлива VII - сероводород на установку производства Hj SO4 VIII- газ в топливную сеть /Л" - моноэтанол-амин - диэтиленгликоль на регенерацию. [c.125]

    В технологических установках по производству этилена и пропилена применяют турбокомпрессоры типа К605-181-1, которые служат для сжатия газов пиролиза этана. Схема турбокомпрессорного агрегата и газопроводов показана на рис. 153. В состав агрегата входят трехцилиндровый восемнадцатиступенчатый компрессор, два повышающих редуктора (между приводным электродвигателем и первым цилиндром и между вторым и третьим цилиндрами), промежуточные газоохладители и сепараторы, приводной электродвигатель, масляная система, органы регулирования, защиты и контрольно-измерительные приборы. [c.283]

    Вал с одним диском. Критическая скорость. Во многих машинах химических производств (центрифугах, сепараторах, мешалках, роторных дробилках и др.) имеются вращаюш,иеся валы с закрепленными на них деталями — роторами, дисками, шкивами, зубчатыми колесами и другими элементами машин. Практически из-за неточности изготовления валов, деталей, закрепляемых на них, и опор, а также из-за погреишостей при их сборке центры масс деталей не находятся на оси вращения вала всегда имеется остаточный дисбаланс. При вращении вала вследствие дисбаланса возникают переменные по направлению силы инерции, дополнительно нагружающие вал и его опоры и вызывающие колебания системы. [c.73]

    Сепараторы (ООР, УОР) с ручной выгрузкой осадка используют для осветления суспензий с концентрацией твердой фазы менее 1 % при размерах частиц 2-6 мкм в малотоннажных производствах, а также для разделения эмульсий с небольшим содержанием твердой фазы. Для уменьшения времени ручной выгрузки осадка в некоторых случаях предусматривают использование сменных корзин, которые в конце цикла извлекают из ротора вместе с осадком. С той же целью применяют быстроразъомные соединения, механические и гидравлические подъемники и т. д. Привод сепараторов ООР, УОР не отличается от приводов других жидкостных сепараторов. [c.348]

    Карбамид из бункера 1 подается транспортером 2 в реактор 3, обогреваемый топочными газами. Реактор может быть выполнен в виде аппарата с псевдоолсиженным слоем катализатора. Образующаяся там смесь вместе с аммиаком сразу поступает во второй реакционный аппарат 4, где происходит синтез меламина. Смесь аммиака, диоксида углерода и сублимированного мелами-па охлаждается в смесителе 5 за счет впрыскивания холодной воды. В сепараторе 6 диоксид углерода, аммиак и пары воды отделяются от суспензии меламина в воде. Газо-паровая смесь поступает в насадочный скруббер 7, орошаемый охлажденным в холо-дпльнике 8 водным раствором аммиака. При этом вода конденсируется, а диоксид углерода дает с аммиаком карбонат аммония, водный раствор которого выводят из куба колонны 7 и направляет в цех производства карбамида. Избыточный аммиак, не погло-"ивщийся в скруббере 7, освобождается от воды в насадочной колонне 9, орошаемой жидким аммиаком (испарение жидкого ам->1иака способствует конденсации воды). Аммиачную воду из куба колонны 9 направляют в аппарат 7, где ее используют для абсорбции диоксида углерода, а рециркулирующий газообразный аммиак возвращают в реактор 3. [c.236]

    В технологической схеме производства карбамида с рециркуляцией аммиака и диоксида углерода, в частности по методу Миллера [97] (рис. VIII-8), имеются замкнутые тех1нологиче-ские циклы, обеспечивающие рекуперацию аммиака, возвращаемого после сепаратора 5 в поток питания, и рекуперацию потока РУАС, подаваемого насосом РУАС высокого давления 9 в колонну синтеза 4. [c.236]

    Категории производства по взрывной, взрывопожарной и пожарной опасности принимаются по перечням, утвержденным Миннефтепромом. Территория площадок под установки комплексной подготовки нефти подразделяется на три зоны производственная (нефтенасосные здания, электрогидраторы, сепараторы, узлы учета нефти, пункты управления задвижками, отстойники, очистные сооружения и другие сооружения пожаро- и взрывоопасных производств, а также вспомогательные здания и сооружения, по характеру производства связанные с технологическим процессом), сырьевых и товарных парков нефтей и нефтепродуктов (резервуары, сливные и [c.96]

    По функционально-технологическому назначению различают следующие виды машинного технологического оборудования химических производств 1) дробилки и измельчители 2) машины для классификации сыпучих материалов 3) смесители, [пттатели, дозаторы 4) меигалки 5) фильтры 6) центрифуги, сепараторы 7) маппгны с вращающимися барабанами. В машинах первых трех групп выполняются, в основном, механические процессы химической технологии по обработке кусковых материалов и сыпучих сред, в машинах следующих трех групп — гидромеханические процессы, обрабатываются преимущественно жидкие среды. В ман]инах с вращающимися барабанами обрабатывают как сыпучие, так и жидкие среды. [c.6]

    В настоящее время требования к чистоте присадок и к сокращению вредных осадков при их производстве непрерывно растут. Большинство отечественных технологических схем предусматривает очистку присадок центробежными машинами [60, с. 91]. Определилась и рациональная двухступенчатая схема очистки присадок центробежными машинами. Первая ступень — очистка на центрифугах с фактором разделения 1500—2000, а затем на сепараторах или центрифугах с большим фактором разделения. Наиболее щироко для очистки присадок применяются шнековая центрифуга непрерывного действия ОГШ и центрифуга ОПН-1005у. Глубокая же очистка присадок может быть осуществлена только при фильтровании присадок с намывным слоем специальных вспомогательных веществ [60, с. 103, 123 280]. [c.250]

    Pi с. 76. Технологическая схема производства этил- или изоиропилбеизола /--насосы 2 — теплообменник 3 —колонна осушки бензола 4, /О — конденсаторы 5 — ena )атор tf —аппарат для получения каталитического комплекса 7 — кипятильник S — сборни < 9 —алкилатор — газоотделитель 12, /6 — сепараторы /3 — абсорбер /4 — водяной сюуббер i5 — холодильник /7. IS — промывные колонны. [c.254]

    Технологическая схема производства моющего средства на основе алкилсульфата изображена на рис. 94. В пленочный реактор 1 непрерывно подают спирт, воздух и пары 50з, разбавленные воздухом. Выходящие газы отделяют в сепараторе 2 от жидкости и направляют в абсорбер 3 для санитарной очистки от остатков 50з. Полученную алкилсерную кислоту нейтрализуют концентрированным раствором щелочи в аппарате 4, имеющем мешалку и выносной холодильник 5, через который жидкость прокачивается насосом. Температура при нейтрализации не должна превышать 60°С. После этого в аппарате 6 с мешалкой проводится более точная нейтрализация смеси (до pH 7 конотроль специальным рН-метром). Нейтрализованная масса, содержащая алкилсульфат и воду, поступает далее в смеситель 7, где к ней добавляют [c.326]

    Отходящие газы производства ПМДА после существующей стадии грубой циклонной очистки от дисперсной фазы при температуре около 140°С поступают Б смеситель диффузорно-щелевого типа, где смешиваются с горячими дымовыми газами (750 С), получаемыми в топке под давлением. В результате отходящие газы нагреваются до 420 С и, взаимодействуя в диффузоре смесителя с закрученным потоком дымовых газов за счет сил внутреннего трения, также приходят в однонаправленное вращательное состояние. При этом частицы пыли ПМДА оплавляются и частично испаряются. Развиваемая при вращательном движении потока центробежная сила отбрасывает наиболее крупные пирофорные тугоплавкие частицы ПМДА на внутреннюю поверхность лепестков диффузора, имеющую температуру, близкую к температуре дымовых газов (600-800°С), что интенсифицирует термодеструкцию частиц ПМДА. Таким образом, смеситель в силу конструктивных особенностей одновременно является также сепаратором и испарителем для крупных частиц ПМДА. [c.120]


Смотреть страницы где упоминается термин Сепараторы в производстве: [c.43]    [c.219]    [c.53]    [c.15]    [c.13]    [c.212]    [c.252]    [c.111]   
Коррозия и защита химической аппаратуры ( справочное руководство том 9 ) (1974) -- [ c.0 ]

Коррозия и защита химической аппаратуры Том 2 (1969) -- [ c.0 ]

Коррозия и защита химической аппаратуры Том 7 (1972) -- [ c.0 ]

Коррозия и защита химической аппаратуры Том 8 (1972) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Емкости в производстве водного слоя из сепаратора

Машины и аппараты химических производств и нефтегазопереработки Расчет на прочность барабанов центрифуг и сепараторов

Мукомольные производств сепараторы

Сепараторы

Сепараторы в производстве гекса.хлорана

Сепараторы в производстве для отделения водного слоя от парафина

Сепараторы в производстве для отделения водорода от технических катализатов

Сепараторы в производстве для отделения продукта от непрореагировавших парафинов

Сепараторы в производстве для очистки водорода

Сепараторы в производстве для разделения жидкой и газовой

Сепараторы в производстве серной

Сепараторы в производстве серной кислоты

Сепараторы в производстве сульфонола

Сепараторы в производстве тетрагидрофурана

Сепараторы в производстве хлоранилинов

Центрифуги и сепараторы для химических производств



© 2025 chem21.info Реклама на сайте