Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Функциональные и технологические свойства

    Характеристика продукции, сырья и полуфабрикатов. В состав мяса птицы входят мышечная ткань, соединительная ткань (рыхлая, плотная, жировая, хрящевая, костная, кровь) и нервная. Количественное соотношение этих видов тканей обуславливает химический состав, функционально-технологические свойства мяса, его питательную и товарную ценность. [c.101]


    Функционально-технологические задачи комплекса А. Основные задачи функционирования комплекса/i, входящего в состав линии для переработки первичного сырья методом разборки, связаны с доводкой показателей свойств, состава и строения окончательного полуфабриката до нормативных показателей свойств готовой продукции, а также с обработкой и защитой продукции, обеспечивающих ее сохранность при транспортировании, хранении и потреблении. К числу этих задач относится тепловая обработка продукции с целью подготовки ее к употреблению в пищу, а также для пастеризации, стерилизации. [c.32]

    Классификация моечных машин по функционально-технологическому принципу позволяет не только понять устройство и принцип действия основных типов моечных машин, но и выбрать ту из них, которая наиболее полно учитывает особенности процесса мойки различных видов пищевого сырья в зависимости от их свойств. [c.253]

    Классификация машин для разделения жидкообразных неоднородных пищевых сред по функционально-технологическому принципу позволяет не только уяснить их устройство и принцип действия, но и выбрать ту из них, которая наиболее полно реализует особенности процесса в зависимости от технологических свойств сырья. [c.594]

    Конечно, в зависимости от типа каучука и олигодиена, функциональности и химической природы концевых групп будут иметь те или иные из рассмотренных выше процессов или их комбинации. В зависимости от этого будет меняться и модифицирующий эффект. В этом свете представляются преждевременными выводы авторов статьи [110], в которой они утверждают, что олигодиены с функциональными группами независимо от природы основной цепи и функциональных групп способствуют улучшению технологических свойств резиновых смесей и физико-механических характеристик на их основе, особенно сопротивления резины раздиру и их динамической выносливости. Сделав этот вывод, авторы рекомендуют при выборе олигомера руководствоваться доступностью олигомера, удобством его введения в смесительное оборудование, а также экономическими соображениями. [c.136]

    Во время хранения может измениться содержание функциональных групп полимеров, входящих в состав клея. Поэтому перед употреблением необходимо проверить химический состав клея. Контролю подвергают технологические свойства клеев жизнеспособность, концентрацию, вязкость или текучесть. [c.43]

    ФУНКЦИОНАЛЬНЫЕ И ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА [c.165]


    Если функциональные свойства характеризуют тот или иной состав собственно СОТС, то технологические свойства СОТС проявляются только в процессе эксплуатации или при специальных технологических испытаниях. Технологические или основные эксплуатационные свойства СОТС оцениваются износом и стойкостью инструмента, производительностью процесса металлообработки, качеством поверхности обработанных деталей и другими показателями. Выбор показателей, их численных значений и методов оценки определяется конкретным технологическим процессом, в котором применяется СОТС. В качестве примера в табл. 4.17—4.19 приведены основные технологические свойства некоторых новых СОТС в сравнении с морально устаревшими составами. Оценка технологических свойств проведена по среднему коэффициенту изменения (увеличения) стойкости режущего инструмента при применении новой СОТС взамен устаревшей и по достигаемой при этом шероховатости обработанной поверхности.  [c.169]

    Структурно-групповой состав минеральных масел определяет многие функциональные и эксплуатационные свойства масляных СОЖ. В частности, структурно-групповой состав оказывает сильное влияние на эффективность действия химически активных присадок, вводимых в масла для улучшения их смазочных и технологических свойств. [c.15]

    Существенно переработана гл. 4, в которой собран материал, посвященный описанию свойств и способов получения отдельных каучуков. Сведения о технологических свойствах каучуков исключены, так как они щироко обсуждаются в учебниках по общей технологии резины. Значительно обновлен и дополнен материал, посвященный вулканизации, а раздел, посвященный общим закономерностям вулканизации, полностью переработан. Приведен в соответствие с установившимися представлениями раздел по серной вулканизации, введены разделы, посвященные описанию процессов вулканизации по функциональным группам и особенностям вулканизации жидких (олигомерных) каучуков. Дополнены разделы по химической модификации эластомеров. [c.6]

    Технологические параметры переработки зависят от природы базового полимера, состава используемого композиционного материала, метода переработки, конструктивных особенностей основного и вспомогательного оборудования и оснастки, фундаментальных и технологических свойств материалов, типа и функционального назначения получаемых изделий и ряда других факторов. [c.199]

    Широко применяются сополимеры, в которых на одну часть стирола приходится две части метилметакрилата > . Интенсивно исследуются сополимеры со свободными функциональными группами, обладающие ценными технологическими свойствами . [c.15]

    Химическое модифицирование — наиболее устойчивое изменение поверхности пигмента оно достигается проведением реакций эте-рификации, алкилирования, ионного обмена и других, причем сопровождается выделением побочных продуктов реакции. К химическому модифицированию относится механохимическая прививка. Механохимической прививкой к поверхности пигментов органических радикалов с заданными функциональными группами или двойными связями можно получить материалы с важными технологическими свойствами. При совместном диспергировании пигмента с мономерами происходит прививка мономеров к поверхности пигмента. Так, при диспергировании в вибромельнице смеси пигмента со стиролом происходит самопроизвольная полимеризация и прививка полистирола к поверхности пигмента [6]. Способы прививки полимеров к поверхности пигмента еще не нашли практического применения. Существуют методы получения пигментов в полимерной оболочке, например путем суспензионной полимеризации мономеров в присутствии пигмента в среде органической жидкости. [c.14]

    Системное свойство слабой предсказуемости, которое никоим образом не означает неуправляемость, понимают как непредсказуемость поведения системы, лишь основываясь на знаниях морфологии и функциях элементов (подсистем). Знание функционально-структурного состава АГВ еще не позволяет сказать, как поведет себя АПЕ, содержащая этот аппарат, поскольку ГА-воздействие есть следствие тесной взаимосвязи АГВ как механической конструкции и рабочего тела (вещества) как носителя физико-химических свойств. Результатом такого взаимодействия является система специфических (уникальность) эффектов, вызывающих изменение скорости (поведение системы) процесса. Таким образом, вторым, образующим систему, свойством ГА-технологий является возникновение в процессе функционирования ГА-АПЕ ряда уникальных технологических эффектов. [c.11]

    Качество изделия определяется его конечными свойствами, которые формируются на протяжении всего потока производства, и поэтому ддя обеспечения согласованности функциональных и технологических допусков необходимо рассматривать всю совокупность технологических операций. [c.66]


    Модификация диеновых эластомеров не только улучшает технологические и физико-механические свойства смесей и вулканизатов в условиях существующей технологии, но и открывает ряд возможностей в интенсивно разрабатываемых новых процессах получения литьевых композиций и гранулирования каучуков. В первом случае целесообразно исследовать смесь, содержащую высокомолекулярный полиизопрен с функциональными группами и низкомолекулярные жидкие полимеры, при нагревании которой в присутствии сшивающих агентов из маловязкой наполненной системы образуется вулканизат с заданными свойствами, определяемыми в значительной степени присутствием высокомолекулярного полиизопрена. В другом случае может быть использовано частичное структурирование модифицированных полимеров для облегчения их грануляции или совмещение стадий модификации в массе и грануляции [62]. [c.240]

    В проектировании сложных ХТС можно выделить стадии внешнего и внутреннего проектирования. Стадия внешнего проектирования ХТС связана с решением общих функционально-структурных вопросов, к которым принадлежат выбор целей функционирования и основных технологических операций системы организация технологической и информационной топологии ХТС в целом исследование свойств ХТС и внешней среды определение характеристик воздействия внешней среды иа ХТС определение технологических режимов, обеспечивающих оптимальное взаимодействие элементов ХТС между собой. [c.27]

    На этом этапе необходимо, по существу, сформулировать задачу многокритериальной оптимизации. Исходной предпосылкой яв-ляется необходимость получения продукта (основного или промежуточного) с заданными свойствами при условии обеспечения экстремального значения критерия оптимальности. В общей задаче разработки технологической схемы речь идет о раскрытии функционального соотношения (4.3), т. е. выборе наилучшего процесса и типа аппарата. [c.78]

    Таким образом, система проектирования может быть представлена в виде отдельных подсистем, которые являются реализацией этапов разработки технологической схемы и содержат логически взаимосвязанные подмножества алгоритмов программно-математического обеспечения. К ним можно отнести а) подсистему информационного обеспечения, содержащую алгоритмы расчета свойств веществ и смесей, модули поддержания и ведения функциональной среды подсистемы, модули выбора типового оборудования и технологических схем б) подсистему технологического расчета единиц оборудования и их комплексов в проектном и проверочном вариантах в) подсистему синтеза стадий производства и технологической схемы в целом, содержащую модули анализа условий равновесия, расчета балансов, алгоритмы синтеза г) подсистему конструкционного расчета оборудования, содержащую модули расчета типоразмеров оборудования, алгоритмы выбора оборудования из рядов стандартов д) подсистему оценки (экономической, термодинамической и т. д.) варианта схемы, способа реализации процесса и т. д. е) подсистему диалогового взаимодействия, обеспечивающую интерактивное введение процесса проектирования. [c.111]

    На основе соотношений (9.55)—(9.68) можно получить общий вид множества функциональных ограничений, определяющих свойство многофазной СМО, моделирующей проектируемую схему в задаче (9.23). Пусть множества технологических стадий /< ), предназначенных для изготовления продукта г, разбивается на непересекающиеся подмножества, [c.546]

    Для эффективного решения задач, возникающих на всех уровнях иерархии химического производства, необходимо прежде всего выполнить идентификацию операторов отдельных ФХС, составляющих ХТС, т. е. оценить входящие в них параметры. Это может быть достигнуто либо решением обратных задач с постановкой соответствующих экспериментов (если объектом исследования служит действующее производство), либо априорным заданием ориентировочных значений технологических параметров, используя данные аналогичных производств (при проектировании новых химико-технологических систем). После процедуры идентификации отображение (2) можно считать готовым для изучения свойств ФХС в рабочем диапазоне изменения ее параметров нахождения оптимальных конструктивных и режимных параметров технологического процесса синтеза оптимального управления системой анализа и моделирования поведения ХТС, в состав которой в качестве элемента входит рассматриваемая ФХС и т. п. Реализация перечисленных задач так или иначе связана с решением системы уравнений, соответствующих отображению (2), что равносильно получению явной функциональной связи между переменными у и и либо в аналитической форме конечных соотношений, либо в виде результата численного решения задачи на ЭВМ. Формально это решение представляется в виде соответствующего отображения [c.8]

    Зависимость константы скорости от температуры процесса поликонденсации подчиняется уравнению Аррениуса (рнс. 86), Процессы поликонденсации носят ступенчатый характер. Рост цепи происходит постепенно в результате взаимодействия молекул мономеров с образовавшимся полимером. На определенных стадиях производства молекулы имеют линейную или разветвленную структуру и лишь в конечной стадии получения готовых изделий могут протекать реакции, в результате которых образуется трехмерная структура. Основные факторы, влияющие на скорость и направление реакции поликонденсации строение мономеров, в частности количество функциональных групп, их свойства и соотношение в реакционной смеси, тип катализатора и его активность, наличие примесей в мономере, а также строгое соблюдение технологического [режима реакции (температура, давление, степень перемешивания, продолжительность и т, п.). Примеси в процессе поликонденсации снижают молекулярную массу, образуют неактивные концевые группы и вызывают разветвление макромолекул. [c.199]

    Товарные масла, как правило, получают смешением (компаундированием) базовых дистиллятных масел друг с другом или с остаточными компонентами. Высококачественные товарные масла приготовляют с обязательным введением присадок, чаще всего композиций присадок разного функционального действия. Суммарное содержание присадок в маслах составляет. обычно 3—8%. а в некоторых маслах доходит до 15—17%. Смешение — один из важных процессов заключительной стадии производства товарных нефтепродуктов, включающий в себя разработку и использование наиболее эффективных технологических, схем и систем управления, расчеты- оптимальных рецептур смесей с учетом показателей СВОЙСТВ товарных масел и т. п. [c.337]

    Работоспособность КСП определяется функциональными свойствами энергетическим (эффективность теплообмена), метрическим (пространственное расположение и геометрические связи элементов СП), механическим (прочность, надежность), взаимодействующие с потребительскими свойствами точностью (конструкционная, технологическая, эксплуатационная), взаимозаменяемостью по геометрическим и физическим параметрам, стабильностью выхода продукции, технологичностью конструкции. [c.22]

    Однако в целом неуглеводородные примеси оказывают отрицательное влияние на многие эксплуатационные свойства бензинов и снижают эффективность основных технологических процессов получения базовых компонентов — каталитического риформинга и каталитического крекинга. Поэтому эти соединения, как правило, удаляются из перерабатываемого сырья. Содержание неуглеводородных примесей в современных автомобильных бензинах невелико, и химическая стабильность последних зависит главным образом от углеводородного состава, а также от вводимых в бензины присадок различного функционального назначения. [c.256]

    В практике нефтегазодобычи и строительства подземных сооружений в рыхлых коллекторах и грунтах широко распространено использование смол на основе сланцевых фенолов для повышения устойчивости таких объектов к процессам суффозии. Эффективность консолидации определяется главным образом когезионными свойствами получаемой смолы. Установлено, что повысить эту характеристику возможно с помощью специальных добавок в состав смолы химических соединений, образующих в объеме наряду с прочными химическими связями дополнительные менее прочные, но легко регенерируемые молекулярные связи, которые обеспечивают релаксацию перенапряжений и залечивание дефектов, возникающих вследствие тепловых флуктуаций, действия внешних нагрузок. К категории химических соединений, обеспечивающих указанный эффект относятся циклические ацетали, в функциональных группах которых содержатся гетероатомы кислорода с необобщенными электронами (4-фенил-4-метил-1,3-диоксан и 4-фенил-1,3-диоксан). Приведены результаты лабораторных и промышленных испытаний указанных добавок, показавшие высокую технологическую эффективность консолидации коллекторов и грунтов. [c.117]

    В результате проведенного авторами поиска было выделено более 700 индивидуальных соединений, которые входят в составы и композиции, применяемые или экспериментально апробированные в технологической цепи добыча — подготовка — транспорт нефти . В приведенных ниже таблицах представлены их физико-химические свойства и функциональное назначение. [c.9]

    При контроле неферромагнитных металлов основным информационным параметром электромагнитного неразрушающего контроля является электропроводность, функционально связанная с химическим составом, структурой, состоянием, условиями применения, от которых зависят такие физико-механические свойства металлов, как статическая и усталостная прочность, вязкость, пластичность, твердость, теплоемкость и др. Это позволяет путем измерения электропроводности определять химический состав, структуру, режимы термообработки, напряженное состояние, твердость, прочность и т. д. При наличии даже незначительного количества примесей изменяются электропроводность и технологические свойства металла, что может явиться причиной образования дефекта. Приборы для измерения электропроводности позволяют установить зависимость электропроводности металла от наличия различных примесей и решить обратную задачу - по электропроводности и составу примесей определять их кoJШ- [c.99]

    Разработанные методы регулирования свойств полимерных материалов свидетельствуют о возможности создания ряда композиционных материалов различного функционального назначения. Вместе с тем, при проведении химического модифицирования с увеличением степени хлорирования полистирола его технологические свойства ухудшаются (уменьшается вязкость), что запрудняеп переработку материалов в изделия эффекгивными методами [c.77]

    Обстоятельное исследование влияния химической природы функциональных групп олигомера проведено в работе Кур-лянда с соавторами [116]. Объектами исследования служили полученные свободнорадикальной полимеризацией олигомеры с различными статистически распределенными по цепи и концевыми функциональными группами карбоксильными, эпоксидными, гидроксильными, амидными, амидооксидными, гидразидными и гидразонными. Большинство олигомеров выполняло роль пластификаторов, снижая вязкость по Муни и улучшая технологические свойства повышая пластичность и уменьшая [c.138]

    Функциональные показатели количественно характеризуют растворы и получаемые покрьггия. Среди первых можно выделить скорость осаждения (мкм/ч, мг/см -ч), температуру, кислотность и другие технологические показатели применения раствора чувствительность к активации, определяемую по обратной величине периода индукции реакции металлизации ( - ) или по минимальному количеству активатора на поверхнсстн диэлектрика (мг/см ) состав и возможные отклонения концентраций компонентов от оптимального. Качество покрытий оценивают по химическому составу физическому составу и структуре механическим свойствам (твердость, пластичность, эластичность, вязкость, прочность, ползучесть) физическим свойствам (электропроводность, теплопроводность, магнитная восприимчивость и вязкость, отражательная способность, прозрачность) химическим свойствам (коррозионная стойкость, растворимость и т. п.) технологическим свойствам (паяемость, свариваемость, полируелюсть). [c.35]

    Получены новые виды латексов — сополимеров дивинила с мономерами, содержащими функциональные группы гидроксильные, оксифенильные, фенильные, пиперидильные. Изучены фи-зико-химические и технологические свойства синтезированных латексов. [c.414]

    Олигоэфнракрилаты улучшают технологические свойства смесей из комбинаций бутадиеннитрильного и фторсодержащего каучуков — снижают вязкость и температуру смесей, энергозатраты при их изготовлении (табл. 3.20). При этом олигоэфира-крилаты ТМГФ-11 и 7-20 с большей функциональностью ([=8) обеспечивают более высокие физико-механические показатели резин (прочность, теплостойкость), чем тетрафункциональные ТГМ-3 и МГФ-9 (табл. 3.21). [c.149]

    При содержании метакриловой кислоты до 2% (мол.) карбокси-латный каучук практически не отличается по строению от аналогичного бутадиен-стирольного сополимера. Звенья метакриловой кислоты распределены в нем в виде микроблоков. Наличие в макромолекулах карбоксильных групп заметно изменяет технологические свойства каучука и механические свойства его вулканизатов. Существенное различие между этими каучуками состоит в способности вулканизоваться оксидами металлов, диаминами, многоатомными спиртами, полиэпоксидами и другими соединениями, функциональные группы которых взаимодействуют с карбоксильными группами каучука (см. гл. 13). [c.114]

    В настоящее время трудно представить, что такие отрасли промышленности, как гидрометаллургия, тонкий органический синтез, ядерная технология, и такие процессы, как водоподго-товка на тепловых и атомных электростанциях, очистка сточных вод и теплоносителя ядерных реакторов от радиоактивных примесей и др., могут существовать без применения ионитов. Большинство процессов в перечисленных отраслях промышленности осуществляется при повышенных температурах, в агрессивных средах или при воздействии ионизирующих излучений. При продолжительном использовании ионитов происходит необратимое изменение их физико-химических и технологических свойств, обусловленное деструкцией полимерной матрицы или функциональных групп. Из трех составляющих компонентов набухшего ионита (полимерная матрица, функциональные группы, вода) наименее стойки функциональные группы. Поэтому основное внимание при. исследовании термической, химической и радиационной стойкости ионитов уделяется механизму и кинетике разрушения или отщепления функциональных групп. Матрица ионитов, построенная обычно на основе карбодепных полимеров, характеризуется значительно большей термической и радиационной стойкостью (но меньшей стабильностью в окислительных средах) чем функциональные группы. Вода, несомненно, наиболее устойчивый компонент в составе набухшего ионита, но в ее присутствии стойкость функциональных групп и матрицы понижается. [c.6]

    Таким образом, модификация полиизопрена введением функциональных полярных групп является эффективным способом улучшения свойств его невулканизованных смесей и вулканизатов и может быть осуществлена как дополнительная технологическая стадия в его производстве. [c.234]

    Дисперсионная среда торфяных систем представляет собой сложный водный раствор органических и минеральных соединений, концентрация которых зависит от условий торфообразо-вания и соотношения твердой и жидкой фаз. Развитая поверхность конденсированных структур торфа и высокая их насыщенность функциональными группами обусловливает широкий спектр поверхностных явлений в межфазных слоях материала, предопределяющий в итоге специфику процессов связывания и переноса воды в торфе и продуктах его переработки. От состояния связанной воды во многом зависит выбор оптимальных технологических схем обезвоживания, сушки торфяного сырья, получения продуктов с заданными свойствами. [c.63]

    X — вектор входных псрсмсипнх ХТС К — вектор выходных переменных ХТС 2— вектор внутренних переменных (параметров внутренних гехнологическнх потоков) ХТС К=К ]К где —вектор параметров элементов ХТС К (К") — вектор технологических (конструкционных) параметров элементов ХТС V —вектор параметров внешней окружающей среды С — технологическая топология ХТС 3 — вектор функциональных характеристик (количеств венных оценок характеристических свойств ХТС) 3 — желаемые или предельные значения функциональных характеристик ХТС при современном уровне аппаратурного оформления технологических операция Д — вариации (изменения) векторов — критерий эффективности ХТС -фо — некоторое значение критерия эффективности — оптимальное значение критерия эффективности г >п — предельное оптимальное значение критерия эффективности действующих ХТС прп современном аппаратурном оформлении технологических операций Л — современный уровень аппаратурного оформления технологических операций. [c.42]

    Иконографические математические модели ХТС представляют собой либо графическое отображение таких качественных свойств технологической или информационной топологии ХТС, по которым можно определить количественные характеристики системы либо графическое отображение функциональных соотношений между параметрами и переменными ХТС, которые являются по своей сущности чисто математическими либо графическое отображение логическо-информационных связей между уравнениями и информационными переменными символической математической модели ХТС. Применение иконографических математических моделей позволяет принципиально облегчить решение трудоемких задач анализа, синтеза и оптимизации сложных ХТС. [c.43]

    Для математического моделирования ХТС используют специальные программы ц и ф р о в о г о м о д е л и р о в а н и я (СПЦМ), построенные по блочному илн декомпозиционному принципу. Обобщенная функциональная схема СПЦМ ХТС состоит из следующих блоко.в (рис. П-7) 1—блок ввода исходной информации 2 —блок математических моделей типовых технологических операторов или модулей 3 —блок определения параметров физико-химических свойств технологачесних потоков и характеристик фазового равновесия 4 —блок основной исполнительной программы 5 —блок обеспечения сходимости вычислительных операций 6 — блок оптимизации и расчета характеристик чувствительности ХТС к изменению пара-метров элементов (технологических операторов) системы 7 — блок изменения технологической топологии ХТС 8 — блок расчета функциональных характеристик ХТС 9 —блок вывода результатов. [c.53]

    Требуемая точность модуля влияет на точность расчета параметров физико-химических свойств технологических потоков, преобразуемых в каждом модуле. При использовании простых модулей может оказаться достаточным задание параметров физико-химических свойств веществ или технологических потоков в виде постоянных величин. Однако для точных модулей может потребоваться знание функциональных зависимостей параметров физикохимических свойств от температуры, давления и состава потоков. Оценка точности модуля определяет число параметров физикохимических свойств, которые должны учитываться, а также вид уравнений, необходимых для их расчета. [c.62]

    Более перспективным представляется подход к решению задачи синтеза технологических схем СРМС, в основу которого положено использование таких элементов, как кипятильник, дефлегматор и секция колонны (тарельчатая или насадочная). В этом случае задача синтеза формулируется как задача определения оптимальной структуры связей таких элементов с одновременной выработкой требований к их функциональным свойствам в пределах известных качественных и количественных характеристик каждого элемента. Достоинством такого подхода является то, что он позволяет рассматривать практически все возможные схемы СРМС любой степени сложности при сохранении достаточной гибкости в определении необходимого числа ступеней разделения в проектируемых колоннах. [c.282]

    Основной исходной информащ(ей для расчета допусков на листовые детали будет информация о функциональном назначении аппарата (тип аппарата, рабочее давление, полный объем, химические свойства среды, определяющие выбор марки листового материала) информация о технологической точности применяемого оборудования на эаводе-изготовителе. [c.135]

    Установлены факторы механохимической повреждаемости и раскрыт механизм технологического наследования при производстве оборудования. В результате анализа кинетики МХПМ получены функциональные зависимости долговечности конструктивных элементов, изготовляемых упруго-пластическим деформированием, от величины остаточных напряжений и степени предварительной деформации, исходных механических свойств материала, уровня напряженности при эксплуатации и коррозионной активности рабочей среды. Предложен критерий оценки влияния предварительной пластической деформации и деформационного старения на охрупчивание сталей в рабочих средах. [c.5]


Смотреть страницы где упоминается термин Функциональные и технологические свойства: [c.180]    [c.63]    [c.21]    [c.74]    [c.9]   
Смотреть главы в:

Физико-химические и теплофизические свойства смазочных материалов -> Функциональные и технологические свойства




ПОИСК





Смотрите так же термины и статьи:

Технологические свойства



© 2025 chem21.info Реклама на сайте