Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сахара получение простых эфиров

    Получение простых эфиров сахаров [c.183]

    Изящный способ получения эфиров трифенилкарбинола состоит в действии трифенилхлорметана иа оксисоединение в пиридиновом растворе. Этот способ применялся для получения простых эфиров из низших спиртов, эфиров оксикислот и сахаров [c.111]

    Углеводы. Их распространение в природе и биологическая роль. Понятие о фотосинтезе. Классификация сахаров простые и сложные (олиго- и полисахариды) тетрозы, пентозы, гексозы, гептозы и т. д. альдозы и кетозы. Доказательство строения глюкозы как пятиатомного альдегидоспирта. Пространственная конфигурация моносахаридов D- и -ряды. Химические свойства моносахаридов. Окисление до альдоновых, уроновых и сахарных кислот, восстановление действие синильной кислоты, гидроксиламина и фенилгидразина (получение озазонов). Эпимеризация. Различие в действии кислот на пентозы и гексозы. Замещение атомов водорода в гидроксильных группах получение сахаратов, сложных эфиров моноз, их простых эфиров, гликозидов. Конденсация моноз с альдегидами и кетонами. [c.188]


    Некоторые спирты превращаются в простые эфиры при взаимодействии их с галоидными алкилами в присутствии окиси серебра. Использование этого способа обычно ограничивается получением метиловых эфиров сахаров, хотя он применялся с успехом также для превращения сложных эфиров а-оксикис лот в соответственные алкоксильные соединения [c.108]

    Применению бензиловых и трифенилметиловых простых эфиров в качестве защитных групп в сахарах [164, 165] и глицеридах [166, 167] посвящен ряд обзоров. Трифенилметиловые эфиры использовались и в химии стероидов [4]. Эти эфиры легко образуются при взаимодействии спиртов с хлористым бензилом или трифенилметилом в присутствии щелочи или пиридина. Образованиетрифенил-. метиловых эфиров характерно для первичных, а также для пространственно незатрудненных вторичных спиртов. Бензиловые и трифенилметиловые эфиры очень устойчивы к действию щелочных реагентов и многих окислителей, но легко расщепляются кислотами и восстановителями. В упомянутых обзорах приведено так много примеров получения и применения бензиловых и трифенилметиловых эфиров, что нет необходимости в более подробном изложении вопроса. [c.216]

    В данную товарную позицию, однако, не включаются искусственно составленные смеси простых и сложных эфиров сахаров и их соли, а также не включаются продукты, искусственно приготовленные или полученные из исходных материалов, в которых несахарные компоненты являются смесями, например, сложные эфиры сахара, полученные из жирных кислот товарной позиции 3823. Кроме того, из этой товарной позиции исключаются ангидриды сахара и другие производные сахара, которые обычно классифицируются в группе 29 в соответствии с их химической структурой. [c.246]

    Подобно тому как явлению таутомерии кетоенолов уподобляют таутомерию с-кетолов, так и перегруппировка сложных эфиров енолов находит себе аналогию в явлении, связанном с перемещением ацильных групп, которое имеет большое значение в химии сахаров. Подобные перегруппировки встречаются, однако, не только в группе сахаров, но известны также и в случае простых полиоксисоединений, и, вероятно, являются также причиной той трудности, с которой сопряжено получение изомерных моно- и диглицеридов (стр. 200). [c.542]

    Специфические возможности для получения простых эфиров сахаров установлены Гельферихом с сотрудниками [449]. Обычно только первичная гидроксильная группа способна к образованию под действием трпфенилмепШлхлорида так называемых трити-ловых эфиров. Так как тритиловая группа впоследствии снова может быть отщеплена, то этим путем можно получать производные сахаров, содержащие только одну свободную гидроксильную группу в положении 6 поэтому метод этот представляет большую ценность для синтеза определенных дисахаридов. В качестве примера приведем пропись получения 6-тритил-а-с -глюкозы по Гель-фериху, Моогу и Юнгеру [450]. [c.185]


    У г л е в о д ы. Классификация. Моносахариды. Строение. Глюкоза и фруктоза. Стереойзомерия моносахаридов. Получение и химические свойства. Дисахариды сахароза, лактоза и мальтоза. Строение. Восстанавливающие и невосстанавливающие сахара. Несахароподобные полисахариды крахмал и целлюлоза. Строение и отличие в строении. Гидролиз к рахмала и целлюлозы. Простые и сложные эфиры целлюлозы. Бумага. Сульфитно-дрожжевая бражка (СДБ). Использование простых эфиров целлюлозы и СДБ в строительстве. [c.170]

    Вторая часть книги содержит 9 глав, в которых дано описание способов получения меченных изотопами углерода карбонильных соединений (гл. V), простых эфиров (гл. VI), гетероциклических соединений (гл. VII), углеводородов и их замещенных (гл. VIII), оксисоединений (гл- IX), ониевых соединений (гл. X). Синтезу меченых сахаров, стероидов и витаминов посвящены главы XI—XIII. [c.5]

    Метод Маскэта представляет вариант известного из органической химии метода синтеза простых эфиров из галоидного алкила и алкоголята. Для получения алкоголятов сахаров (сахаратов) Маскэт предложил использовать натрий в жидком аммиаке. После удаления аммиака сахараты суспендируют в инертном растворителе и обрабатывают иодистым метилом. В настоящее время метилирование проводят непосредственно в жидком аммиаке без выделения сахаратов Метод обычно применяется в сочетании с методом Хеуорса в том случае, когда необходимо провести дометилирование уже частично метилированного сахара. Из-за необходимости работать с жидким аммиаком и отсутствия особых преимуществ перед методом Пурди — Ирвина этот метод широкого распространения не получил. [c.160]

    Реакции нуклеофильного замещения широко применяются в органической химии низкомолекулярных соединений и, в частности, в химии сахаров для синтеза большого числа разнообразных производных. По механизму нуклеофильного замещения протекают, в частности, все реакции О-алкилирования целлюлозы, т- е. получение различных типов простых эфиров целлюлозы. При этом роль нуклеофильного реагента, атакующего различные 0-алкили-рующие реагенты, играют ионизированные гидроксильные группы целлюлозы. Однако синтез производных целлюлозы по реакции нуклеофильного замещения может быть осуществлен и по принципиально иной схеме — взаимодействием различных низкомолекулярных нуклеофильных реагентов с цёллюлозой (редко) или с некоторыми сложными эфирами целлюлозы. Таким путем можно синтезировать новые классы производных целлюлозы, получение которых другими известными методами до настоящего времени не представлялось возможным. [c.430]

    Реакции многоатомных спиртов обусловливаются наличием большого количества гидроксилов и ведут к большому числу различных производных. Наиболее важные реакции следующие 1. Восстановление иодистоводородной кислотой приводит к нормальным вторичным иодистым алкилам, например гекситы дают вторичный иодистый гексил СНз-(СН2)з-СНЛ-СНа. Эта реакция доказывает, что в гекситах цепь нормальная. 2. При действии хлорангидридов или ангидридов кислот получаются полные сложные эфиры например из маннита и уксусного ангидрида образуется сложный эфир СбН8(ОСОСНз)е. Этой реакцией устанавливается количество гидроксилов в молекуле спирта. 3. Окисление ведет к получению простых сахаров и продуктов дальнейшего их окисления. [c.78]

    Хорошо известны и широко применяются неионогенные поверхностно-активные вещества, не содержащие полиоксиэтиленовой цепи, а именно сложные эфиры сахаров—маннита и сорбита. Представителями таких веществ являются так называемые спаны. Они производятся, по-видимому, в виде смесей сложных эфиров, в молекулах которых остаток сорбита частично этерифици- рован жирной кислотой и частично дегидратирован еще до этерификации, в результате чего образуются циклические внутренние эфиры моно- и диангид-росорбитов. Эти внутренние эфиры, обычно называемые сорбитанами (или соответственно маннитанами), выделяются в относительно чистом виде и могут образовывать с рядом соединений как сложные, так и простые эфиры [64]. Сложные эфиры сорбитанов можно получать посредством прямой этерификации этих веществ жирными кислотами при высоких температурах [65], либо путем переэтерификации с низшими эфирами жирных кислот (например, ме-тилолеатом), либо при взаимодействии сорбитанов с хлорангидридами жирных кислот [66]. Поскольку сорбиты и сорбитаны содержат несколько гидроксильных групп, возможно получение ди- и полиэфиров [67]. Эти соединения недостаточно растворимы для того, чтобы их можно было применять в качестве поверхностноактивных веществ, и поэтому желательно получать продукты, в которых на каждый остаток сорбитана приходится одна жирная ацильная группа. [c.101]


    Принципиальная технологическая схема получения L(4-)-mo-лочной кислоты состоит в следующем мелассную среду, содержащую 5—20% сахара, вытяжку солодовых ростков, дрожжевой экстракт, витамины, аммония фосфат, засевают L. delbrue ku. Брожение протекает при 49—50°С при исходном pH 6,3—6,5. По мере образования молочной кислоты ее периодически нейтрализуют мелом. Весь цикл ферментации завершается за 5—10 дней при этом в культуральной жидкости содержатся 11—14% лактата кальция и 0,1—0,5% сахарозы (80—90 г лактата образуются из 100 г сахарозы). Клетки бактерий и мел отделяют фильтрованием (отход), фильтрат упаривают до концентрации 30%, охлаждают до 25°С и подают на кристаллизацию, которая длится 1,5—2 суток. Кристаллы лактата кальция обрабатывают серной кислотой при 60—70°С, гипс выпадает в осадок, а к надосадочной жидкости добавляют желтую кровяную соль при 65°С для удаления ионов железа, затем натрия сульфат для освобождения от тяжелых металлов. Красящие вещества удаляют с помощью активированного угля. После этого раствор молочной кислоты подвергают вакуум-упариванию (при остаточном давлении 800—920 кПа) до 50% или 80%. Оставшийся не до конца очищенный раствор молочной кислоты используют для технических целей. Более очищенную кислоту можно получать при перегонке ее сложных метиловых эфиров, при экстракции простым изопропиловым эфиром в про-тивоточных насадочных колоннах. [c.412]

    Башенную, контактную техническую и генерированную кислоты концентрации 62—78% Нз804 применяют для получения суперфосфата, сульфата аммония и других удобрений, для производства кислот (соляной, фосфорной, плавиковой, борной, угольной, хромовой, уксусной, винной, лимонной, стеариновой и др.), для получения сульфатов (натрия, калия, бария, алюминия, железа, меди, цинка) и других солей, в металлургии меди, никеля, кобальта, платины и серебра, для травления железа, меди и других металлов, для производства бихромата калия, для производства простых и сложных эфиров, для очистки некоторых нефтепродуктов, при производстве крахмала, патоки и сахара, в красильном деле для отбелки, травления и ситцепечатания, для дубления КОЛС и для многих других целей. [c.91]

    Подвижность атома хлора в Т. настолько велика, что он гидролизуется в трифенилкарбинол уже прн стоянии на воздухе с водой и спиртами Т. реагирует при комнатной теми-ре с заменой хлора окси- или алко-ксигруппой. С лучшими выходами простые тритило-вые эфиры получаются в присутствии пиридина. С аммиаком, аминами, гидразином или аминокислотами Т. дает N-тритильные производные. Реакции Т. со спиртами или аминами широко используются для защиты окси- или аминогруппы, особенно в сахарах и аминокислотах. При действии восстановителей на р-р Т. в инертном растворителе образуется желтый р-р очень активного парамагнитного трифенилметиль-ного радикала. Этот радикал может быть получен также нри обработке тритилкатиона восстановителями  [c.137]

    Истинные гидроксильные группы углеводов можно алкилировать смесью диметилсульфата и едкого натра или иодистым метилом и окисью серебра. Если в качестве исходных материалов для получения эфиров сахара используют чистые а- или р-гликозиды, продукты реакции также являются чистыми аномерами. В противном случае будут получены смеси двух форм. Так, Уэст и Холден [50] утверждают, что метил-2,3,4,6-тетра-О-глюкопи-ранозид можно получить путем действия на а-метилглюкозид диметилсуль-фатом и едким натром, применяя только /б количества реактива, необходимого для метилирования Р-глюкозы. Для алкилирования небольших проб можно воспользоваться более простой методикой, но, чтобы все гидроксильные группы прореагировали, обычно приходится последовательно добавлять реактивы. Чаш,е всего для алкилирования применяют смесь диметилсульфата с 30% едкого натра, поскольку эти реактивы являются дешевыми и в их смеси растворяются простые сахара и гликозиды. В условиях реакции ацетильные группы замещаются метильными группами. Следовательно, ацетилированные углеводы, так же как и свободные сахара и гликозиды, будут реагировать. В результате частичного метилирования сахара становятся нерастворимыми в водных средах и скорость реакции соответственно медленно падает. С этим частично можно бороться, продолжая реакцию в таких органических растворителях, как тетрагидрофуран, и применяя в качестве реактивов иодистый метил и окись серебра (метод Пурди). Кун и др. [32] описали усовершенствованный метод переметилирования сахарозы реактивами Пурди при использовании диметилформамида в качестве растворителя. В этом растворителе углеводы довольно хорошо растворяются, и поэтому за одну стадию метилирования можно получить продукт, инфракрасный спектр которого не обнаруживает полос поглощения гидроксильных групп. Редуцирующие сахара переводятся этим реактивом перед обработкой в гликозиды вследствие окислительной способности окиси серебра. [c.552]

    Кроме того, молекулярная дестилляция облегчает проведение некоторых обратимых химических реакций, давая возможность сдвигать равновесие реакции в желательную сторону с целью увеличения выхода продуктов. К таким реакциям, в частности, относятся реакции конденсации. Так, например, удалось почти количественно провести конденсацию ангидрида себациновой кислоты, полиэфира гликоля с двуосновными кислотами, эфиров аминокислот, а также освободить полученные высокомолекулярные продукты от побочных продуктов реакции. В лабораторной практике, где меньшее значение имеет стоимость метода, молекулярная перегонка может и должна найти очень широкое применение. Методом молекулярной дестилляции, а также молекулярной сублимации во многих случаях можно провести количественное разделение смесей органических веществ более просто и с меньшей затратой времени, чем другими методами. Все термически нестойкие вещества с молекулярным весом выше 300 могут обрабатываться этим методом. К таким веществам относятся нефтяные остатки, красящие вещества и их промежуточные продукты, пластификаторы, высокополи-меры, производные гликоля и сахара, промежуточные продукты синтеза каучука, синтетические смазочные вещества, триглицериды, аминокислоты и многие другие. [c.43]


Смотреть страницы где упоминается термин Сахара получение простых эфиров: [c.400]    [c.399]    [c.133]    [c.272]    [c.285]    [c.368]    [c.75]    [c.48]    [c.66]   
Методы эксперимента в органической химии Часть 2 (1950) -- [ c.183 ]




ПОИСК





Смотрите так же термины и статьи:

Простые получение

Эфиры простые

Эфиры простые, получение



© 2025 chem21.info Реклама на сайте