Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы бутиленов

    Бутан Катализатор Бутилен [c.192]

Рис. 3. Зависимость 1п к от 1Д для различных степеней отравления поверхности катализатора. Данные приведены при отравлении катализатора бутиленом в течение Рис. 3. Зависимость 1п к от 1Д для <a href="/info/397876">различных степеней</a> <a href="/info/351543">отравления поверхности катализатора</a>. Данные приведены при <a href="/info/3365">отравлении катализатора</a> бутиленом в течение

    Примером адиабатических систем являются реакционные камеры процессов термического крекинга деструктивной гидрогенизации, каталитического крекинга с движущимся катализатором, прямой гидратации этилена, дегидрирования бутиленов и др. [c.263]

    При применении в лифт - реакторе более активного катализатора МЦ —5 достигается дальнейшее повышение выхода бензина, по сравнению с Цеокаром —2, на 13 % масс., бутиленов и пропилена соответственно на 1,4 и 1,5 % масс. [c.129]

    В 30-х годах широкое распространение в мировой нефтепереработке получили процессы каталитической полимеризации бутиленов, позднее пропилена, содержащихся в газах каталитического крекинга (с последующим гидрированием димеров), с целью получения высокооктанового компонента авиабензина (полимеризацию проводили на катализаторе фосфорная кислота на кизельгуре при 200 — 230 °С, 6 — 7 МПа и объемной скорости сырья [c.136]

    Характерной особенностью фракций и С4, получаемых при каталитическом крекинге, является высокое содержание в них олефиновых углеводородов — пропилена в первой и бутиленов во второй. Во фракции С4, образующейся при крекинге над синтетическим катализатором, концентрация изобутана значительно выше, чем нормального бутана. [c.210]

    В настоящее время за рубежом распространен процесс фтористоводородного алкилирования — производство высококачественного автомобильного алкилата взаимодействием пропилена, бутиленов и амиленов с изобутаном. Имеется 85 действующих, строящихся и проектируемых установок мощностью по продукту от 95 до 3340 м /сут. Процесс осуществляется при 32 °С и 0,7—0,8 МПа давление должно быть таким, чтобы сохранить углеводороды и катализатор в жидкой фазе. Получаемый в результате процесса алкилат плотностью 697 кг/м при 20 °С имеет следующий фракционный состав (разгонка ио Энглеру) [4]  [c.62]

    Полимеризация этилена, пропилена и бутиленов также исследовалась в присутствии фосфорной кислоты, содержащей тяжелый водород [14]. В этих опытах при давлении от 76 до 350 мм рт. ст. катализатором служили 2,5—4,5 г пятиокиси фосфора с 0,3—0,65 г тяжелой воды. [c.194]

    Ожиженная бутан-бутеновая фракция, содержавшая 19,3 % изобутилена и 28,6% м-бутилена, полимеризовалась при 165° и давлении 45 кг/см в присутствии катализаторов крекинга на силикатной основе [67] при объемной часовой скорости жидкости от 7 до 8 с образованием от 36 до 52 % вес. полимера в расчете на взятый бутилен. Эти синтетические катализаторы имели состав окись кремния — окись алюминия, окись кремния — окись циркония, окись кремния — окись алюминия— окись циркония и окись кремния — окись алюминия — окись тория, в которых 100 молей окиси кремния были смешаны соответственно с И молями окиси алюминия, 50 окиси циркония, 2 окиси алюминия и 12 окиси циркония, 5 окиси алюминия и 0,5 окиси тория. [c.204]


    Полагают, что высококипящие олефины должны образовываться в результате ступенчатого присоединения этилена. Этот катализатор показал слабую активность по отношению к димеризации -бутилена, но при полимеризации этилена всегда получается значительно больше гексена, чем октена, даже нри высоких степенях превращения его в бутилен. Добавление к этилену 50 % бутена-2 повысило на 50 % количество образовавшегося гексена на израсходованный этилен. Маловероятно, что этот результат был просто следствием чисто физического подавления десорбции бутилена с катализатора, так как при добавлении пропилена к сырью пентен составлял 30 % полимерного продукта. [c.206]

    Осуществлена в заводских размерах гидрогенизация октенов, получаемых методом полимеризации бутиленов. Процесс идет на катализаторе никель-фарфор при давлении 4,2 ат и температуре около 180° [133], а также над сероустойчивым катализатором [22] при более жестких условиях температуры и давления. [c.270]

    При полимеризации пропилена и бутиленов с применением алюмоорганических катализаторов выходы гептенов оказались значительно более низкими. [c.107]

    Низкомолекулярные полимеры и сополимеры пропиленов и бутиленов вплоть до С12 используются в качестве компонентов автомобильного бензина. В годы второй мировой войны их подвергали гидрированию, в результате чего получался высококачественный компонент авиационного бензина. Эти полимеры обычно получаются над фосфорнокислотным катализатором. [c.581]

    Глубина выжига кокса характеризует полноту регенерации катализатора и выражает отношение разности содержания кокса на закоксованном катализаторе, поступающем в зону регенерации, и регенерируемом катализаторе, выходящем из регенератора, к содержанию кокса на закоксованном катализаторе. При регенерации катализатора для восстановления его активности содержание остаточного кокса на катализаторе обычно снижают до 0,1—0,05 % мае. Как показывают исследования, увеличение остаточного кокса на катализаторе с 0,05 до 0,58 % мае. приводит к снижению выхода бензина на 20 %, а бутиленов — на 49 % /9/. [c.34]

    Влияние примесей. Наличие бутиленов (1-бутен, 2-бутен) в изобутилене понижает молекулярную массу и выход бутилкаучука. Действие 1- и 2-бутена примерно одинаково. Бутены индукционного периода, не вызывают, полимеризация при наличии бутенов протекает более спокойно. Выход полимера при наличии бутенов может быть увеличен повышением количества катализатора. [c.345]

    Продукты реакции на выхода из реакционной печи охлаждаются сначала в трубчатом холодильнике до 300—350°, а затем в водяном скруббере до 60—70°, после чего подвергаются промывке натронной известью для удаления из них органических кислот. Охлажденные и очищенные газы пиролиза направляются в ацетиленовый конвертор, в котором на хромо-никелевом катализаторе при температуре около 200° ацетилен гидрируется до этилена. На выходе из ацетиленового конвертора газы компримируются до 18—20 amu, подвергаются промывке маслом, адсорбции углем и обработке щелочью для освобождения от бензиновых углеводородов и СОг и направляются в секцию низкотемпературной ректификации, где из них выделяют этилен, пропилен, бутилен, бутадиен, этан и горючие газы (метан, водород). Горючие газы используют в качестве технологического топлива, а этан возвращают в процесс. [c.53]

    Немецкая фирма Фарбениндустри дегидрогенизацию бутана в бутилен проводит непрерывно на установках с движущимся слоем катализатора. Конверсия бутана в бутилен за один проход составляет 20—25% с предельными выходами 85%. В процессе используется катализатор, содержащий 8% СгаОз и 1—2% КаО на алюминиевой основе. Регенерация его осуществляется на отдельной установке. Расход катализатора на таких установках выше, чем на установках с неподвижным катализатором, и составляет около 20 кг на 1 т получаемого бутилена. [c.69]

    Процесс дегидрогенизации бутана и бутиленов на установках с подвижным катализатором представляет большой интерес и разрабатывается в СССР. [c.69]

    Для производства из бутиленов бутадиена в США применяется процесс Джерси. Сырье, содержащее около 70% бутиленов, смешивается нри 595° с 10—20 объемами пара при температуре 705 и проходит через слой катализатора. Дегидрогенизация бутиленов проводится при температуре 620—680° и времени контакта [c.70]

    Широкое развитие промышленного процесса было связано со значительными ресурсами изобутана, получающегося на установках каталитического крекинга. В связи с передачей бутиленов на установки каталитического алкилирования для полимеризации стали использовать пропилен, менее в то время (в 60-х годах) дефицитный. В качестве катализатора используют фосфорную кислоту на кварцевом носителе. Полимеризацию проводят при 220— 230°С и 6,5—7,0 МПа, объемной скорости подачи сырья от 1,7 до 2,9 ч- . [c.79]

    Процесс алкилирования изобутана олефинами, преимущественно бутиленами, разработанный с применением в качестве катализатора серной кислоты и позднее фтористого водорода, был быстро внедрен в промышленность. Первые промышленные установки серно-кислотного алкилирования были введены в эксплуатацию в конце 30-х годов, а фтористоводородного алкилирования — в 1942 г. Целевым продуктом процесса был вначале исключительно компонент авиационного высокооктанового бензина, и лишь в послевоенные годы алкилирование стали использовать для улучшения моторных качеств товарных автомобильных бензинов. [c.80]


    Выбор в качестве промышленных катализаторов алкилирования серной и фтористоводородной кислот обусловлен их хорошей избирательностью, относительной дешевизной, продолжительными циклами работы установок благодаря возможности регенерации или непрерывного восполнения активности катализатора. Каталитическому алкилированию в присутствии серной или фтористоводородной кислоты могут подвергаться парафиновые углеводороды только изостроения, содержащие активный третичный атом углерода. При этом алкилирование изобутана этиленом идет с трудом, очевидно, вследствие стабильности образующихся промежуточных соединений — эфиров. Алкилирование пропиленом, особенно бутиленами, протекает достаточно глубоко. [c.81]

    В дальпей пем для сменно-циклических процессов ста.пи применять реакторы регенеративного типа, в которых сам катализатор аккумулирует тепло от в]>1жига кокса и отдает его реакционной смеси во время цикла реакции, т. е. используется в качестве тепло-носнтеля. Реакторы такого типа находят применение для более длинных циклов, нанример в процессе дегидрирования бутиленов. [c.282]

    При ввадении в реакцию эквимолярных количеств обоих газов конверсия достигает 93%, причем пропилен реагирует легче, чем бутилен. Полученная смесь состоит на 40—45% из гептенов, на 10— 15% из октенов и других олефинов. Гептеновая фракция содержит в основном 2,3-днметилпентен. В 1 ч на 1 л катализатора образуется 1040 см полимерного продукта [129]. [c.238]

    При крекинге на катализаторе Цеокар —2 в лифт —реакторе, заканчивающемся форсированным псевдоожиженным слоем, по сравнению с чисто лифт —реактором, выход бензина возрастает на 10,6 % масс, бутиленов на 1,2 и пропилена на 0,9 % масс., а также улучшается окта.ювая характеристика бензина. [c.129]

    В системах крекинга с циркулирующим катализатором при неизменных пропускной способности реактора и кратности циркуляции катализатора с ростом температуры в рабочей зоне реактора существенно увеличиваются общая глубина превращения сырья, выход сухого газа, выход фракции С , количество пропилена и бутиленов и в сравнительно небольшой степени повышается выход дебутанизированного автобензина. Относительный выход дебута-пизпрованного автобензина, считая на весовую единицу образующихся побочных продуктов (сухой газ, кокс, фракция С,), при этом уменьшается. [c.191]

    Б11Т1шн-б] тпиленовая фракция. Фракция С4, получаемая при крекинге прямогонных соляровых дистиллятов над синтетическими алюмосиликатными катализаторами, богаг изобутаном (40—55%) и бутиленами (35—45%). Содержание в ней нормального бутана невелико (10—15%). При крекинге тех же дистиллятов над естественными катализаторами образующаяся фракция С4 содержит меньше изобутана и больше нормального бутана (см. табл. 28 на стр. 201). [c.233]

    Промышленные процессы дегидрирования бутана. Дегидрирование бутанов до бутиленов проводится обычно при температурах от 540 до 600° С и давлении около одной атмосферы или ниже. Для реакции дегидрирования, идущей с поглощением тепла, требуется около 560 ккал на килограмм бутана и промышленные установки дегидрирования должны обеспечивать подвод такого количества тепла. В Соединенных Штатах Америки в настоящее время применяются две технологические схемы процессов каталитического дегидрирования бутана. В установках фирмы Филлипс Петролеум Компани тепло, необходимое для проведения реакции, подводится посредством обогревания горячим топочным газом двухдюймовых трубок с катализатором. В установках Гудри процесс осуществляется короткими циклами за счет тепла, выделяющегося во время регенерации катализатора. [c.199]

    В процессе Гудри [2, 40, 80, 88] для дегидрирования используется тепло, аккумулированное катализатором и инертным веществом катализатора. Процесс ведется над алюмохромовым катализатором, обработанным предварительно в течение 10 часов водяным паром при 760° С и смешанного с двухкратным количеством алунда [30, 31]. При продолжительности дегидрогенизационного цикла от 7 до 15 минут наблюдается снижение температуры на 50° С, после чего температура снова повышается путем выжига углерода на катализаторе неразбавленным воздухом. Путем соответствующего подбора условий можно добиться теплового равновесия между теплотой реакций и теплотой регенерации катализатора. При применении в качестве сырья к-бутана процесс может быть направлен па получение как бутиленов, так и бутадиена. Установка может работать при малых давлениях (порядка 127 мм рт. ст.), необходимых для получения хороших выходов бутадиена. Температура процесса устанавливается от 566 до 593° С, и объемная скорость от 0,8 до 2,0. В настоящее время завод в Эль-Сегундо (штат Калифорния) максимально развивает производство бутенов как сырья для последующего превращения в бутадиен посредством процесса Джерси (описанного ниже). [c.199]

    Практически при тех же условиях пентаны дают метилтиофены при температуре от 482 до 650°. Изопентан дает 3-метилтиофен. Приблизительно такие же выходы тиофзна получаются при экзотермической реакции дву-окиси серы с бутаном, бутиленом и бутадиеном при 500—600° в присутствии в качестве катализатора окиси алюминия х ли окиси алюминия — окиси хрома [18]. [c.91]

    Фосфаты металлов. Медная соль нирофосфорной кислоты. Промышленный процесс полимеризации осуществлялся с углеводородной фракцией Сз—С [65], содержавшей около 45% олефинов. В качестве катализатора использовалась медная соль нирофосфорной кислоты, приготовляемая смешением пирофосфата меди с равным объемом гранулированного древесного угля. Состав типичного сырья был следующий 0,7 % объемн. жидкого этилена, 3,2% этана, 10,6% пропилена, 17,8% пропана, 9,9% изобутана, 12,2 % изобутилена, 20,1 % / -бутиленов, 24,2 % и-бутана и 1,3% пентанов. При полимеризации этого сырья в одноступенчатом процессе при 205°, давлении 61 ат и скорости подачи сырья 0,7 л/час на 0,5 кг катализатора 88 % олефинов превращалось в жидкие продукты. [c.199]

    О до 40° при перемешивании в автоклаве, охлаждаемом водой. Однако при добавлении таких более реакционноснособных олефинов, как изобутилен и изопентены, пропилен легко реагировал с олефинами изостроения с большим выходом гептеновой и октеновой фракций. Диоксифторборная кислота, таким образом, использовалась в качестве катализатора для сополимеризации пропилена с изопентеном, пропена с изобутиленом, бутена-1 с изобутиленом, бутена-2 с изобутиленом и смеси -бутиленов с изобутиленом при температурах от О до 40° и давлении от 3,4 до 8,5 ат. Полимеры гидрировались, подвергались фракционированной перегонке, а полученные фракции анализировались методом инфракрасной спектроскопии. Гидрирование сополимера пропилена и изобутилена давало продукт, содержавший 67 % гептановой фракции, состоявшей на 95 % из 2,3-диметилпентана. [c.201]

    В этом опыте соотношение изобутилена к н-бутилену менялось от 1,7 моля в первые 24 часа опыта до 2,1 моля в третьем периоде за то же время, а скорость образования полимера менялась от 1,5 до 0,6 г на 1 г катализатора. В присутствии этого катализатора при 250—300° и давлении 50 кг/см полимеризовалось некоторое количество пропилена из пропан-нропиленовой фракции, содержавшей 18 % пропилена. В этнх условиях активность катализатора снижалась значительно быстрее, чем при использовании бутан-бутеновой смеси. Полимер, полученный из пропилена, содержал около 10% димеров и около 60 % тримеров. [c.204]

    Этилен полимеризуется с образованием бутилена над кобальтом [9], отложенном на древесном угле при температуре ниже 150° и нри давлениях от 1 до 100 ат. При нодходяш ем режиме работы образуются также и жидкие углеводороды. В определенных условиях за один проход полимеризация составляет в среднем 50%, продукт содержит около 75% бутиленов, 15% гексенов и 10 "о более высококипящих олефинов. Катализатор продолжал хорошо работать и после того, как было получено более 165 кг полимера на 1 л катализатора, а возможная средняя скорость образования полимера составляла ЗОО г на 1 катализатора в час. [c.206]

    И могут быть использованы в непрерывных процессах, йаилучшие результаты получены при применении жидких комплексов хлористого алюминия, которые вследствие нерастворимости в продукте алкилирования быстро отстаиваются. Это позволяет отделять их и снова вводить в процесс. Комплексы можно получать на месте (in situ) при помощи реакции алкилирования [2, 47] или же приготовлять предварительно путем взаимодействия хлористого алюминия с различными алифатическими углеводородами и углеводородными фракциями (например, с олефинами, с 2,2,4-триметил-пентаном, с керосином) [19]. Хорошие результаты давало использование в качестве катализатора жидкого комплекса, приготовленного взаимодействием хлористого алюминия с остатком от перегонки продукта (температура кипения около 160—200° 98,4% парафиновых и 1,6% олефиновых углеводородов), получаемого при алкилировании изобутана пропиленом и бутиленами в присутствии серной кислоты. [c.321]

    Реакция треххлористого фосфора и кислорода с парафинами хорошо известна, Караш и его сотрудники отметили, что предложенный ими метод с п( рекисным катализатором эффективен для реакций между олефинами и треххлористым фосфором, Октен-1 при 85° в присутствии перекиси ацетила дает продукт присоединения С801дС1зР [43], С РС1з и кислородом бутилен дает продукт присоединения С4Н8С1РОС12 [78], Как предполагает Караш, если в реакционной смеси присутствуют перекиси, реакция идет по свободно-радикальному цепному механизму, инициируясь свободными радикалами, образующимися при разложении перекиси ацетила. [c.360]

    IV-15. Фонтана, Герольд, Кинней и Миллера видоизменили процесс производства высокомолекулярных полиолефинов в батарее реакторов смешения непрерывного действия [Ind. Eng. hem., 44, 2955 (1952)]. Они предложили подавать свежий бутилен с одинаковой скоростью в каждый из четырех реакторов. соединенных последовательно. Катализатор загружали только в первый реактор. Переток между реакторами осуществлялся непрерывно. Размеры реакторов подобраны таким образом, чтобы обеспечить приблизительно постоянное время пребывания смеси в каждом аппарате. Для реакции первого порядка вывести соответствующие уравнения или рассчитать батарею из четырех одинаковых реакторов при равной подаче бутилена в каждый аппарат. [c.139]

    Технологическая схема процесса каталитической дегидрогенизации, применяемая фирмой Гудри , представлена на рис. 14. Процесс проводится в присутствии хромо-алюминиевого катализатора и ирименяется для производства из и-бутана бутиленов или бутадиена. [c.66]

    Для процесса дегидрогенизации бутиленов в бутадиен разработано несколько катализаторов. Фирма Дау кемикел компани разработала катализатор из фосфата кальция и никеля. По со-обгцению фирмы в промышленных условиях при глубине превращения 35% выход бутадиена на превращенные бутилены 90%. Фирма Филлипс петролеум раньше применяла промотированный бокситовый катализатор, пропитанный перекисью бария. На этом катализаторе выход бутадиена из бутиленов в лабораторных условиях составлял 85% при 20%-ной их конверсии и 72% при 40%-ной конверсии. В заводских условиях получен более низкий выход, равный 70—80% при 20—25%-ной конверсии. [c.71]


Смотреть страницы где упоминается термин Катализаторы бутиленов: [c.264]    [c.271]    [c.56]    [c.311]    [c.325]    [c.327]    [c.368]    [c.106]    [c.524]    [c.459]    [c.138]   
Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.548 , c.605 ]

Общая технология синтетических каучуков Издание 4 (1969) -- [ c.102 , c.129 ]




ПОИСК





Смотрите так же термины и статьи:

Бутилен



© 2025 chem21.info Реклама на сайте