Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Митохондрии цикл лимонной кислоты

Рис. 1.4. Различные митохондриальные препараты. А. Интактная митохондрия. / — цикл лимонной кислоты. Б. Субмитохондриальная частица. Рис. 1.4. Различные митохондриальные препараты. А. <a href="/info/1518344">Интактная митохондрия</a>. / — <a href="/info/71266">цикл лимонной кислоты</a>. Б. Субмитохондриальная частица.

    Полученные вещества претерпевают дальнейшие превращения в циклической системе реакций, именуемой циклом лимонной кислоты (или циклом трикарбоновых кислот) или циклом Кребса. Эта система локализована в митохондриях..  [c.424]

    Цикл лимонной кислоты цикл Кребса) протекает в митохондриях. Его суммарное уравнение имеет вид [3.8.2 [c.706]

    Если в митохондриях повышается концентрация цитрата, то по челночному механизму он поступает в цитозоль (цитоплазму). Это сигнал к синтезу жира, так как цикл лимонной кислоты перегружен топливом - ацетил-КоА - свободен  [c.317]

    Юджин Кеннеди и Альберт Ленинджер показали позднее, что все реакции цикла лимонной кислоты протекают в митохондриях животных клеток. В изолированных митохондриях печени крысы (разд. 2.8) были обнаружены не только все ферменты и коферменты цикла лимонной кислоты здесь же, как выяснилось, локализованы все ферменты и бел- [c.485]

Рис. 16-11. Локализация ферментов цикла лимонной кислоты в митохондриях. Рис. 16-11. Локализация <a href="/info/1351135">ферментов цикла лимонной кислоты</a> в митохондриях.
    Число молекул оксалоацетата в митохондрии. В последней реакции цикла лимонной кислоты происходит дегидрирование малата, в результате чего регенерирует оксалоацетат, необходимый для [c.505]

    В эукариотических клетках почти все специфичные дегидрогеназы, принимающие участие в окислении пирувата и другого клеточного топлива через цикл лимонной кислоты, находятся во внутреннем компартменте митохондрий-в их матриксе (рис. 17-2). Во внутренней митохондриальной мембране локализуются переносчики электронов, составляющие дыхательную цепь, и ферменты, катализирующие синтез АТР из ADP и фосфата. Молекулы, играющие роль [c.509]

    На второй стадии окисления жирных кислот эти ацетильные остатки ацетил-СоА окисляются через цикл лимонной кислоты до СО2 и Н2О. Этот процесс также протекает в митохондриях. Таким образом, ацетил-СоА, образующийся в результате окисления жирных кислот, поступает на общий конечный путь окисления вместе с ацетил-СоА, образующимся из глюкозы через реакцию окисления пирувата (рис. 17-1). [c.556]

    Окисление жирных кислот у больных диабетом. Когда при Р-окислении в печени образуется больше ацетил-СоА, чем может быть окислено через цикл лимонной кислоты, избыток ацетил-СоА направляется на образование кетоновых тел-ацетоацетата, D-P-гидроксибутирата и ацетона. Именно такое положение существует при тяжелой форме диабета, потому что ткани таких больных неспособны утилизировать глюкозу и вместо этого окисляют большие количества жирных кислот. Хотя ацетил-СоА и нетоксичен, в митохондриях его избыток все же должен переводиться в кетоновые тела. Почему Каким образом это разрешает возникающую проблему  [c.569]


    Результатом ее является в конечном счете отток а-кетоглутарата из пула промежуточных продуктов цикла лимонной кислоты в митохондриях мозга и как следствие этого-снижение скорости окисления глюкозы, играющей роль главного топлива для клеток мозга. Оба названных фактора, несомненно, очень важны, но есть, очевидно, и какие-то другие причины высокой чувствительности мозга к аммиаку, пока еще недостаточно изученные. [c.586]

    Митохондрии. Окруженные мембраной органеллы, присутствующие в цитоплазме эукариотических клеток они содержат ферментные системы, необходимые в цикле лимонной кислоты, в транспорте электронов и при окислительном фосфорилировании. [c.1014]

    Соотношение концентраций ряда митохондриальных ферментов, в том числе типичных дегидрогеназ цикла лимонной кислоты и переносчиков электронов в дыхательной епи, остается неизменным в митохондриях [c.364]

    Анаэробный гликолиз происходит не в митохондриях, но зато именно там протекают последующие стадии дыхания — цикл Кребса (называемый также циклом трикарбоновых кислот и циклом лимонной кислоты) и конечное дыхание. Эти реакции изучены до мельчайших подробностей. Нас здесь будет интересовать только основной принцип. Он состоит в том, что пировиноградная кислота расщепляется все дальше и дальше, до углекислого газа (СОг) и водорода (Нг), а в заключение водород окисляется кислородом воздуха (следовательно, этот этап процесса дыхания является аэробным) с образованием воды. Так как СОг и НгО представляют собой бедные энергией конечные продукты, следовательно, энергия, заключавшаяся ранее в пировиноградной кислоте, должна была перейти в какую-то иную форму. Часть ее (небольшая), очевидно, переходит в тепло большая же часть энергии обнаруживается в богатом энергией химическом соединении — это наш старый знакомый АТФ, который известен как универсальный донор энергии для клетки. [c.223]

    Большой интерес с точки зрения обмена веществ представляют митохондрии (см. кн. I, стр. 9). Митохондрии содержат ферменты цикла лимонной кислоты, системы р-окисления жирных кислот, дыхательной цепи и окислительного фосфорилирования, пируватдегидрогеназный комплекс — мультиферментную систему, катализирующую окисление пировиноградной кислоты до ацетил-КоА, и другие ферменты [9]. Локализация ферментных систем в митохондриях показана ниже  [c.398]

    Этап окисления питательных веществ является конечным метаболическим путем распада всех питательных веществ. Он включает цикл лимонной кислоты, систему терминального окисления (дыхательная цепь) и процесс окислительного фосфорилирования, которые протекают на мембранах митохондрий. В процессе сложных окислительных превращений ацетил-КоА распадается до конечных продуктов СОд и НдО. При этом выделяется около 2/3 заключенной в питательных веществах энергии. Часть энергии выделяется в виде тепла, а другая ее часть накапливается в химических связях молекул АТФ, образующихся в процессе окислительного фосфорилирования — присоединения фосфорной кислоты к АДФ  [c.32]

    При образовании СО2 в этом цикле используется кислород, образующийся при распаде молекулы воды. Молекулы СО2 выходят из митохондрий и покидают клетку. Суммарная реакция цикла лимонной кислоты имеет вид [c.54]

    Цикл лимонной кислоты функционирует только в аэробных условиях. Поэтому его работа зависит от скорости поступления кислорода в организм и скорости его утилизации клетками, а также от концентрации окисленных форм НАД и ФАД. Скорость многих биохимических реакций цикла зависит также от содержания АТФ и АДФ в митохондриях. При уменьшении использования АТФ в клетке, а также при недостаточности АДФ скорость происходящих в цикле реакций снижается. [c.54]

    Важную роль в регуляции цикла лимонной кислоты играют активность и количество ферментов и коферментов, при этом изменяется концентрация ацетил-КоА и ряда промежуточных продуктов обмена. Так, дополнительное поступление ацетил-КоА и таких промежуточных продуктов окисления, как цитрат, сукцинат, фумарат, повышает скорость реакций этого цикла и общую скорость потребления кислорода. В состав многих ферментов входят витамины, поэтому наличие их в клетке в необходимых количествах также существенно влияет на скорость реакций этого цикла. Многие катионы (Ре , Мп , Mg , Си ), являясь активаторами ферментов митохондрий, также влияют на скорость реакций цикла лимонной кислоты. Отдельные вещества, например фторсодержащие, могут снижать скорость реакций биологического окисления в этом цикле, подавляя активность ферментов. [c.54]

    Таким образом, в цикле лимонной кислоты происходит окисление питательных веществ и извлечение энергии в виде высокоэнергетического водорода (2Н+ -I- 2е ) его переносчиками НАД и ФАД. Восстановленные переносчики (НАДН и ФАДН ) доставляют водород к внутренним мембранам митохондрий, где передают его на так называемую дыхательную цепь. В этой цепи происходит передача электронов к молекулярному кислороду с образованием молекулы НдО и создается электрохимический градиент концентрации Н , за счет энергии которого происходит синтез АТФ в процессе окислительного фосфорилирования. [c.54]


    В основном ферменты синтеза нуклеиновых кислот, а в митохондриях — ферменты процессов аэробного окисления углеводов и жирных кислот (весь набор цикла лимонной кислоты), превращения отдельных аминокислот. В мембранах митохондрий локализованы ферменты дыхательной цепи и процессов окислительного фосфорилирования, катализирующие реакции образования АТФ. В рибосомах сосредоточены ферменты биосинтеза белка, а в лизосомах — ферменты гидролитического расщепления различных веществ. Каждый фермент катализирует определенную специфическую реакцию, что обеспечивает упорядоченность многостадийных метаболических процессов. [c.89]

    Извлечение метаболической энергии из углеводов происходит почти во всех клетках организма человека и включает две основные фазы — бескислородное (анаэробное) окисление, которое протекает в цитозоле преимущественно скелетных мышц и называется гликолизом, и кислородное (аэробное) окисление, протекающее в митохондриях на ферментах цикла лимонной кислоты и дыхательной цепи. [c.170]

    Примером, показывающим, что представление о клеточном ядре как о единственном месте транскрипции в клетке в действительности верно лишь в первом приближении, могут послужить такие цитоплазматические органеллы, как митохондрии (фиг. 20 и 250). В клетках эукариотов именно в митохондриях локализованы основные реакции энергетического метаболизма, такие, как цикл лимонной кислоты и окислительное фосфорилирование (см. гл. П1). Обсуждение деталей строения и функции митохондрий выходит далеко за пределы задач данной книги. Поэтому мы отметим лишь, что митохондрии долгое время рассматривались как самовоспроизводящиеся элементы, обеспечивающие свою собственную генетическую непрерывность. [c.510]

    Углеводы, жирные кислоты и большинство аминокислот окисляются в конечном счете через цикл лимонной кислоты до СО2 и Н2О. Однако, прежде чем эти питательные вещества будут вовлечены в цикл, их углеродный скелет должен быть разрушен, а его фрагменты должны превратиться в ацетильные группы ацетил-СоА, потому что именно в этой форме цикл лимонной кислоты принимает большую часть поступающего в него топлива . О том, как из жирных кислот и аминокислот образуются ацетильные группы для этого цикла, мы узнаем из гл. 18 и 19. Здесь же мы рассмотрим процесс, в результате которого пируват, образовавшийся при гидролитическом расщеплении глюкозы, окисляется до ацетил-СоА и СО2 при участии набора ферментов, объединенных структурно в так называемый пи-руватдегидрогеназный комплекс. Эта му-льтиферментная система, находящаяся у эукариотических клеток в митохондриях, а у прокариотических - в цитоплазме, катализирует следующую суммарную реакцию  [c.479]

    В митохондриях содержатся изоцитратдегидрогеназы обоих типов, NAD-зави-симая и NADP-зависимая первый тип встречается только в митохондриях, а второй обнаруживается как в митохондриях, так и в цитозоле. В цикле лимонной кислоты, очевидно, принимают уча- [c.487]

    На последней стадии цикла лимонной кислоты NAD-зависимая L-малатдеги-дрогеназа, содержащаяся в матриксе митохондрий, катализирует дегидрирование L-малата с образованием оксалоацетата (рис. 16-13)  [c.489]

Рис. 17-2. Биохимическая анатомия митохондрий. Указана локализация ферментов цикла лимонной кислоты, цепей переноса электронов, ферментов, катализирующих окислительное фосфорилирование, и внутреннего пула коферментов. Во внутренней мембране одной митохондрии печени может находиться свыше 10000 наборов цепей переноса электронов и АТР-синтетазных молекул. Число таких наборов тем больше, чем больще площадь поверхности внутренней мембраны. Митохондрии сердца с их многочисленными кристами содержат в 3 раза больше таких наборов, чем митохондрии печени. Внутренний пул коферментов и промежуточных продуктов функщю-нально изолирован от соответствующего пула цитоплазмы. Подробно структура митохондрий описана в гл. 2. Рис. 17-2. <a href="/info/566923">Биохимическая анатомия</a> митохондрий. Указана локализация <a href="/info/1351135">ферментов цикла лимонной кислоты</a>, <a href="/info/511072">цепей переноса электронов</a>, ферментов, <a href="/info/208972">катализирующих окислительное</a> фосфорилирование, и внутреннего пула коферментов. Во внутренней мембране одной <a href="/info/1412262">митохондрии печени</a> может находиться свыше 10000 наборов <a href="/info/511072">цепей переноса электронов</a> и АТР-синтетазных молекул. <a href="/info/1476375">Число таких</a> наборов тем больше, чем <a href="/info/199843">больще</a> <a href="/info/895621">площадь поверхности внутренней</a> мембраны. Митохондрии сердца с их многочисленными кристами содержат в 3 раза больше таких наборов, чем <a href="/info/1412262">митохондрии печени</a>. Внутренний пул коферментов и <a href="/info/6222">промежуточных продуктов</a> функщю-нально изолирован от соответствующего пула цитоплазмы. Подробно <a href="/info/101357">структура митохондрий</a> описана в гл. 2.
    Среди NAD-зависимых дегидрогеназ, участвующих в углеводном обмене, главную роль играют глицералъдегидфосфат-дегидрогеназа и лактатдегидрогеназа гликолитической системы, локализующиеся в цитозоле, а также пируватдегидрогеназа, находящаяся в митохондриях (табл. 17-2). Три NAD-зависимые дегидрогеназы участвуют в митохондриях в цикле лимонной кислоты изоцитратдегидрогеназа, <х-кетоглутаратдегидроге-наза и малатдегидрогеназа. К числу других важных митохондриальных дегидрогеназ относятся 3-гидроксиацил-СоА-де- [c.517]

    Судьба ацетил-СоА, который образуется в митохондриях печени в результате окисления жирных кислот, может быть двоякой он может быть окислен до СО2 через цикл лимонной кислоты или преврашен в кетоновые тела и в этом случае направлен к периферическим тканям. Путь, по которому пойдет его превращение, определяется главным образом наличием достаточного количества оксалоацетата, необходимого для того, чтобы ацетил-СоА мог вступить в цикл лимонной кислоты. При очень низкой концентрации оксалоацетата в цикл лимонной кислоты включается мало аце-тил-СоА такая ситуация благоприятствует образованию кетоновых тел. Обычно концентрация оксалоацетата в организме животного бывает низкой при голодании или при пониженном содержании углеводов в пище. В этом случае скорость окисления жирных кислот возрастает и значительная часть образовавшегося ацетил-СоА превращается-через гидроксиметилглутарил-СоА - в свободный ацетоацетат и О-Р-гидроксибути-рат, которые направляются к периферическим тканям. Здесь кетоновые тела служат главным клеточным топливом и окисляются через цикл лимонной кислоты до СО2 и Н2О. [c.567]

    СоА—эпимераза, превращающая D-сте-реоизомеры соответствующих 3-гидрок-сиацил-СоА в L-стереоизомеры. Жирные кислоты с нечетнь(м числом атомов углерода окисляются по тому же основному пути, но при их окислении получается одна молекула пропионил-СоА, которая затем карбоксилируется с образованием метилмалонил-СоА. Последний превращается в сукцинил-СоА в результате очень сложной реакции изомеризации, катализируемой метилмалонил-СоА— мутазой, для действия которой необходим кофермент Bj2. Образующиеся в печени кетоновые тела-ацетоацетат, D-P-гидроксибутират и ацетон-доставляются к другим тканям, превращаются здесь в ацетил-СоА и окисляются через цикл лимонной кислоты. Окисление жирных кислот в печени регулируется скоростью поступления ацильных групп в митохондрии. Специфическая регуляция достигается при помощи малонил-СоА, вызывающего аллостерическое ингибирование карнитин-ацилтрансферазы I. Малонил-СоА-первый промежуточный продукт биосинтеза жирных кислот, протекающего в цитозоле. Когда животное получает пищу, богатую углеводами, окисление жирных кислот подавляется, а их синтез усиливается. [c.568]

    Митохондрии изучены, вероятно, лучше всех других внутриклеточных частиц как в смысле их фракционирования, так и в отношении их функций. В результате всех исследований (см. последний раздел этой главы) сложилось представление, что митохондрии — это те места в клетке, где происходит генерирование и транспорт внутриклеточной энергии. Большая часть ферментов цикла лимонной кислоты (см. гл. XIV) и некоторые вспомогательные окислительные ферментные системы, например пируватдегидроге-назный комплекс (см. гл. XI) и система Р-окисления жирных кислот (см. гл. XIII), локализуются, по-видимому, либо на наружной мембране (от кото- [c.243]

    В большинстве ншвотных и растительных клеток содержится два фермента, способных окислять (+)-изоцитрат — вещество, весьма распространенное в природе. Один из них использует НАДФ, а другой — НАД. Долгое время полагали, что первый фермент, существенно более активный в гомогенатах клеток или экстрактах, и есть тот самый фермент, который непосредственно участвует в цикле лимонной кислоты. Правда, было одно смущающее обстоятельство, состоявшее в том, что основная ферментативная активность почти всегда оказывалась связанной с растворимой фракцией цитоплазмы, хотя уже в то время считалось общепринятым и отмечалось в качестве наиболее характерной особенности цикла, что все ферменты цикла локализованы в митохондриях. Положение прояснилось, когда было показано, что митохондриальные НАД-зависимые ферменты неустойчивы и обладают довольно своеобразными молекулярными и кинетическими характеристиками. Однако эти свойства были как раз такими, которых и следовало ожидать от фермента, выполняющего ключевую регуляторную роль в столь важном участке метаболизма, каким является цикл лимонной кислоты. Оказалось, что в присутствии АДФ фермент становится гораздо устойчивее. Более того, АДФ требуется ферменту для проявления полной активности при малых концентрациях субстрата. Это обусловлено резким влиянием АДФ на К, для изоцитрата. Таким образом, АДФ действует как аллостерический активатор. Существуют веские основания считать, что кроме АДФ фермент может акти- [c.353]

    Откуда берутся органические кислоты, окисляемые митохондриями Эту проблему решил несколько лет назад известный английский биохимик Г. Кребс [56, 57], который установил циклическую последовательность взаимопревращений органических кислот. Эта последовательность известна под несколькими названиями цикл Кребса, цикл лимонной кислоты или цикл трикарбоновых кислот. Детали этого цикла приведены во многих работах. Читателя, интересующегося этим вопросом, мы отсылаем к работам Годдарда и Боннера [38], Биверса [3], Кона и Штумнфа [27], Дэвиса и Эллиса [31] или попросту к любому курсу биохимии. В этой главе мы ограничимся лишь рассмотрением основных черт процесса (фиг. 24 и 25). [c.59]

    Все эти вещества участвуют в широко известном цикле лимонной кислоты. Этот цикл осуществляется митохондриями, маленькими тельцами, находящимися в клетках животных. На последних стадиях цикла митохондрии используют неорганический фосфат для образования богатого энергией соединения — аденозинтрифос-фата (АТФ), который поставляет энергию для многих реакций внутри животной клетки. В настоящее время есть данные, свидетельствующие в пользу того, что в риккетсиях может осуществляться весь цикл лимонной кислоты. Известно, например, что окисление риккетсиями глутаминовой кислоты зависит от присутствия неорганического фосфата, хотя превращение неорганического фосфата в АТФ в процессе этого окисления показать не удалось. Трудность подобных исследований в значительной мере заключается в том, что еще никому не удалось приготовить из риккетсий активные экстракты, в которых сохранялась бы их ферментативная активность. [c.151]

    Цикл лимонной кислоты (или цикл трикарбоновых кислот), открытый английским биохимиком Кребсом в 1937 г., является центральным путем метаболизма ("котлом сгорания") углеводов, жиров и аминокислот, а также извлечения энергии из окисляемых веществ. Протекает он в матриксе митохондрий и включает 8 основных реакций, в ходе которых происходит постепенное окисление ацетил-КоА (активная форма уксусной кислоты) до образования конечного продукта обмена СО2 с накоплением энергии в виде трех молекул НАДН, двух молекул ФАДН2 и молекулы ГТФ. Два атома углерода в молекуле ацетил-КоА при полном обороте цикла превращаются в две молекулы СО2. Последовательность превращений в цикле трикарбоновых кислот показана на рис. 18 (жирным выделены промежуточные продукты цикла, светлым — ферменты, катализирующие превращения веществ, которые находятся в матриксе митохондрии). [c.51]

    Однако важность этого факта в прошлом, по-видимому, переоценивали. Особое значение приписывали митохондрии как силовой станции клетки , где протекают аэробные процессы, снабжающие клетку энергией. Все ферменты, катализирующие цикл лимонной кислоты, локализованы в митохондриях, но оказалось, что ряд незаменимых ферментов этого цикла присутствует не только в этой органелле. Было показано, что выделенные митохондрии (с соответствующими добавками) катализируют цикл лимонной кислоты, но in situ промежуточные метаболиты могут не оставаться в пределах органеллы. Известно, что внутренняя мембрана митохондрий имеет множество систем, осуществляющих транспорт карбоксильного аниона они определяют количество промежуточных продуктов цикла лимонной кислоты, проникающих из митохондрий в цитоплазму (или в другие субклеточные структуры). Ферменты другого цикла, а именно цикла мочевины у млекопитающих, распределены весьма необычно орнитин-карбамоилтрансфераза и большая часть карбаматкиназы сосредоточены в митохондриях, в то время как два других фермента этого цикла, аргининосук-цинат-синтетаза и аргининосукцинат-лиаза, находятся в цитоплазме. Для завершения цикла, по-видимому, требуется встречный транспорт орнитина и цитруллина, через мембрану митохондрий. [c.92]

    Изоферменты митохондрий и цитоплазмы обычно существенно различаются, и фумарат-гидратаза является исключением из общего правила. Довольно типична в этом плане малатдегидрогеназа каждый ее изофермент кодируется отдельным геном, и аминокислотный состав у разных изоферментов неодинаков [4733]. Отношение числа полярных аминокислот к неполярным у двух цитоплазматических форм различается мало, но митохондриальный фермент является более основным белком. Не совсем одинаково и их каталитическое действие, но, хотя митохондриальный изофермент катализирует главным образом прямую реакцию (которая соответствует циклу лимонной кислоты), а цитоплазматический изофермент — обратную (возможно, связанную с липогенезом), оба они присутствуют в относительно больших количествах и вряд ли играют регуляторную роль [4734]. Основная функция этих двух изоферментов, а также двух аспартатаминотрансфераз состоит в переносе по челночному механизму восстановительных эквивалентов между двумя указанными компартментами [3103]. Малатдегидрогеназа растений встречается в виде различных генетически независимых изоформ митохондриальной и цитоплазматической кроме того, в глиоксисомах обнаружена еще и третья форма [5216]. [c.114]

Рис. 2-23. Цикл лимонной кислоты. В митохондриях и клетках аэробных бактерий ацетогруппы, образованные из пирувата, подвергаются дальнейшему окислению. Атом углерода ацетильной группы превращается в СО2, водородные же атомы переносятся к молекулам-переносчикам NAD и FAD. Дополнительные атомы кислорода и водорода включаются в цикл в вгше молекул воды на стадиях, отмеченных звездочками ( ). Рис. 2-23. <a href="/info/71266">Цикл лимонной кислоты</a>. В митохондриях и клетках <a href="/info/199816">аэробных бактерий</a> <a href="/info/508996">ацетогруппы</a>, образованные из пирувата, подвергаются <a href="/info/1459744">дальнейшему окислению</a>. <a href="/info/10974">Атом углерода</a> <a href="/info/97563">ацетильной группы</a> превращается в СО2, водородные же атомы переносятся к молекулам-переносчикам NAD и FAD. Дополнительные атомы кислорода и <a href="/info/1493586">водорода включаются</a> в цикл в вгше <a href="/info/5256">молекул воды</a> на стадиях, отмеченных звездочками ( ).

Смотреть страницы где упоминается термин Митохондрии цикл лимонной кислоты: [c.397]    [c.485]    [c.496]    [c.502]    [c.506]    [c.552]    [c.567]    [c.576]    [c.358]    [c.361]    [c.318]    [c.233]    [c.90]   
Основы биологической химии (1970) -- [ c.350 , c.353 , c.355 , c.357 , c.363 , c.365 ]




ПОИСК





Смотрите так же термины и статьи:

Лимонен

Лимонит

Лимонная кислота

Лимонная кислота в лимонах



© 2025 chem21.info Реклама на сайте