Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий определение в олове

    Предложите гальванические элементы для определения концентраций ионов цинка, железа, алюминия, магния, олова, свинца-и др. Проверьте их работу. [c.338]

    ФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ОЛОВА В АЛЮМИНИИ  [c.292]

    В патентной и технической литературе указывается на множество попыток ускорить процесс окисления сырья и придать определенные свойства окисленному битуму, применяя окислители, катализаторы и инициаторы. Так, в качестве окислителей предложено применять кислород, озон, серу, хлор, бром, иод, селен, теллур, азотную и серную кислоты, марганцовокислый калий и др. В качестве катализаторов окислительно-восстановительных реакций — соли соляной кислоты и металлов переменной валентности (железа, меди, олова, титана и др.) в качестве катализаторов алкилирования, дегидратации, крекинга (переносчика протонов) предложены хлориды алюминия, железа, олова, пятиокиси фосфора и т. п. в качестве инициаторов окисления — перекиси и др. Большинство из них инициирует реакции уплотнения молекул сырья в асфальтены, не обогащая битумы кислородом. [c.157]


    Определение алюминия в олове н оловянных сплавах [c.217]

    Лельчук и др. [227] для определения алюминия в олове высокой чистоты предложили фотометрический метод с эриохромцианином R. Разложение пробы и удаление олова проводят описанным выше методом. [c.217]

    В конце 40-х годов полагали, что сами кислоты Льюиса, так называемые катализаторы Фриделя—Крафтса (соединения общей формулы ЕХ , где Е — бор, алюминий, титан, олово и др., а X — галоген), являются катализаторами катионной полимеризации. Однако после того как Эванс и Мидоус [14] обнаружили (1950 г.), что полимеризация в системе изобутилен—хлористый алюминий имеет место лишь в присутствии каталитического количества воды, стала ясной ошибочность этого представления. Дальнейшие исследования показали необходимость участия дополнительного агента, сокатализатора, в большинстве случаев полимеризации в системах мономер—кислота Льюиса. Как теперь хорошо известно, активные возбудители катионной полимеризации на основе кислот Льюиса образуются только при участии оснований Льюиса. Взаимодействие соединений такого рода приводит к координационным комплексам, способным в определенных условиях (полярная среда, присутствие акцептора положительных ионов) к отщеплению протона или карбкатиопа. К первому типу относятся комплексы с участием таких оснований Льюиса, как вода, спирты, органические кислоты и др., например [c.302]

    В прямом методе определению олова не мешает присутствие до 30% хрома, молибдена и ванадия, до 10% алюминия и 1% железа. [c.96]

    Титан губчатый. Спектральный метод определения ванадия, марганца, хрома, меди, циркония, алюминии молибдена, олова, магния и вольфрама Титан губчатый. Спектральный метод оиределения кремния, железа и никеля [c.821]

    Ферротитан. Метод определения фосфора Ферротитан. Методы определения меди Ферротитан. Метод определения алюминия Ферротитан. Метод определения кремния Ферротитан. Методы определения ванадия Ферротитан. Методы определения молибдена Ферротитан. Методы определения олова Ферротитан. Методы определения циркония Ферротитан. Методы определения хрома Ферротитан. Методы определения марганца Ферровольфрам. Методы определения вольфрама Ферровольфрам. Метод определения фосфора Ферровольфрам. Метод определения кремния Ферровольфрам. Метод определения марганца Ферровольфрам. Метод определения алюминия Ферровольфрам. Метод определения молибдена Ферровольфрам. Методы определения меди Ферровольфрам. Метод определения свинца [c.566]


    Титан губчатый. Спектральный метод определения ванадия, марганца, хрома, меди, циркония, алюминия, молибдена, олова, магния и вольфрама [c.579]

    Каталитическое окисление нефтяных остатков. Имеется множество попыток ускорить процесс окисления сырья, повысить качество или придать определенные свойства окисленному битуму с помощью различных катализаторов и инициаторов. В качестве катализаторов окислительногвосстановительных реакций предложено применять соли соляной кислоты и металлов переменной валентности (железа, меди, олова, титана и др.). В качестве катализаторов дегидратации, алкилирования и крекинга (перенос протонов) предложены хлориды алюминия, железа, олова, пятиокись фосфора в качестве инициаторов окисления — перекиси. Большинство из этих катализаторов инициирует реакции уплотнения молекул сырья (масел и смол) в асфальтены, не обогащая битумы кислородом. Возможности ускорения процесса окисления сырья и улучшения свойств битума (в основном в направлении повышения пенетрации при данной температуре размягчения), приводимые в многочисленной патентной литературе, обобщены в [63], но, поскольку авторы патентов делают свои предложения, не раскрывая химизма процесса, их выводы в настоящей монографии не рассматриваются. Исследования А. Хойберга [64, 65] [c.141]

    Алюминий, цинк, олово, марганец не мешают определению влияние железа и свинца устраняется в процессе анализа [c.191]

    Для анализа использован атомно-абсорбционный СФМ Перкин-Элмер , модель 303. Условия определения каждого элемента взяты из рекомендаций фирмы-изготовителя прибора. В расчете на анализ 2%-ного раствора достигнуты следующие пределы обнаружения (в мкг/г) литий, натрий — 0,1, калий — 0,3, магний, цинк, кадмий — 0,5, кальций—1,0, серебро—1,5, медь — 2,5, сурьма — 3, железо, никель — 5, свинец—10, алюминий, кремний, олово—50, титан—70, ртуть—100, бор—1000. [c.218]

    Ход анализа. Подготовку пробы проводят аналогично определению свинца. После растворения иавески алюминия и выпаривания раствора до влажных солей. к двум пробам приливают по 10 мл воды, а к двум другим по 10 мл воды и 5 мл НС1. Содержимое колбы нагревают до растворения оолей, охлаждают, переносят в мерные колбы емкостью 25 мл, доводят растворы водой до меток и перемешивают. Раствор для определения Sn (1,5 Л/ НС1) помещают в электролизер, ведут обогащение при потенциале —0,6 в, как описано выше, и записывают суммарный пик свинца и олова. Вводят добавку раствора Sn (И), снова проводят обогащение и записывают анодную кривую. Затем в тех же условиях в слабокислом растворе записывают анодный пик свинца. Полученную высоту анодного пика свинца вычитают из высоты суммарного пика свинца и олова и находят содержание олова методом добавок. Определение олова в присутствии свинца возможно до соотношения РЬ Sn = 2 1. [c.298]

    Содержание бора в олове рассчитывают так же, как и при определении алюминия в олове (см. стр. 346). [c.343]

    Сплавы медно-цинковые. Методы определения кремния Сплавы медно-цинковые. Методы определения фосфора Бронзы оловянные. Методы определения меди Бронзы оловянные. Методы определения свинца Бронзы оловянные. Методы определения олова Бронзы оловянные. Методы определения фосфора Бронзы оловянные. Методы определения никеля Бронзы оловя1шые. Методы определения цинка Бронзы оловянные. Методы определения железа Бронзы оловянные. Методы определения алюминия Бронзы оловянные. Методы определения кремния Бронзы оловянные. Методы определения сурьмы Бронзы оловянные. Методы определения висмута Бронзы оловянные. Методы определения серы Бронзы оловянные. Метод определения марганца Бронзы оловянные. Метод определения магния Бронзы оловянные. Методы определения мышьяка Бронзы оловянные. Метод определения титана Сплавы медно-фосфористые. Технические условия Бронзы оловянные, обрабатываемые давлением. Марки Сплавы медно-фосфористые. Методы определения содержания фосфора [c.574]

    ФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ АЛЮМИНИЯ В ОЛОВЕ 1 [c.346]

    Метод позволяет определять следы алюминия в олове высокой чистоты при содержании его 5-10- %. Олово мешает определению. Из всех обычно встречающихся примесей в олове высокой чистоты определению мешает также трехвалентное железо. Все остальные примеси заметного влияния на ход определения не оказывают. Мешающее действие Fe + устраняют восстановлением его до Fe2+ аскорбиновой кислотой. Олово удаляют нз анализируемого раствора в виде хлорного олова. [c.347]

    СПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ ПЛАТИНЫ, ПАЛЛАДИЯ, ЗОЛОТА, СЕРЕБРА, НИКЕЛЯ, МЕДИ, ЖЕЛЕЗА, МАГНИЯ, АЛЮМИНИЯ, ВИСМУТА, ОЛОВА, СВИНЦА, КАДМИЯ, МЫШЬЯКА, КОБАЛЬТА, РТУТИ И СУРЬМЫ В ТЕЛЛУРЕ 1 [c.459]


    Спектральное определение платины, палладия, золота, серебра, никеля меди. Железа, магния, алюминия, висмута, олова, свинца, кадмия [c.527]

    Кверцетин образует комплексные соединения со мно- гими элементами. Комплексные соединения кверцетина с элементами П1 группы (А1, Ga, In, Tl) интенсивно флуо-i ресцируют в ультрафиолетовом свете. Растворы кверцети- на применяют для фотометрических определений цирко- ния, тория, германия, олова, молибдена и др. для флуори- метрических определений алюминия для качественных pe-i акций на железо (III) и уран (VI). Имеющийся в продаже препарат для спектрофотометрического определения олова не пригоден. [c.160]

    Свойства. Мелкокристалический порошок сине-черного цвета. Применяют для определения цинка, кадмия, свинца. Методом обратного титрования солью цинка определяют алюминий и олово. Переход окраски от коричнево-фиолетовой к розово-красной. [c.274]

    Для определения олова в самых различных продуктах широко используются объемкые методы, основакны.е па реакции восстановления олова до двухвалентного состояния с иоеледуюш,им окислением его стандартным раствором иода плп смесью иодата и иодида калия. Лучше применять для окисления иодатно-иодидные растворы, так как растворы иода менее стабильны и легче окисляются воздухом. Были опробованы и рекомендованы различные восстановители, в том числе железо , никель , алюминий и гипосульфит натрия [c.96]

    Титан губчатый. Метод определения азота Титан губчатый. Метод определения железа Титан губчатый. Методы определения углерода Титан губчатый. Методы определения хлора Титан губчатый. Методы определения кислорода Титан губчатый. Метод определения алюминия Титан губчатый. Метод определения кремния Титан губчатый. Метод определения ниобия и тантала Титан губчатый. Метод определения меди Титан губчатый. Метод определения циркония Титан губчатый. Метод определения олова Титан губчатый. Метод определения магния Титан губчатый. Метод определения молибдена Титан губчатый. Метод определения вольфрама Титан губчатый. Метод определеш1я палладия Титан губчатый. Метод определения марганца Титан губчатый. Метод определения хрома Титан губчатый. Метод определения ванадия Титан губчатый. Методы определения водорода Титан губчатый. Методы определения никеля [c.569]

    Титан губчатый. Технические условия Титан и сплавы титановые деформируемые. Марки Сплавы титановые. Методы определения алюминия Сплавы титановые. Методы определения ванадия Сплавы титановые. Метод определения хрома и ванадия Сплавы титановые. Методы определения вольфрама Сплавы титановые. Методы определения железа Сплавы титановые. Методы определения кремния Сплавы титановые. Методы определения марганца Сплавы титановые. Методы определения молибдена Сплавы титановые. Методы определения ниобия Сплавы титановые. Методы определения олова Сплавы титановые. Метод определения палладия Сплавы титановые. Методы определения хрома Сплавы титановые. Методы определения циркония Сплавы титановые. Методы определения меди Сплав титан-никель. Метод определения титана Сплав титан-никель. Метод определения никеля Титан губчатый. Методы отбора и поготовки проб Титан губчатый. Метод определения фракционного состава Сплавы титановые. Методы спектрального анализа Титан и сплавы титановые. Метод определения водорода Титан и титановые сплавы. Методы определения кислорода Титан губчатый. Метод определения твердости по Бринеллю Свинец, цинк, олово и их сплавы Олово. Технические условия [c.579]

    Натрия (калия) гидрокид (едкий натр, едкое кали). NaOH, Т , = 328 °С. (КОН, Т л = 360 °С.) Щелочной плавень. Применяют при определении олова в оловянном камне, при отделении титана от алюминия в присутствии железа и т. д. Сплавление проводят с 8-10-кратным количеством плавня в железных, никелевых и серебряных тиглях. [c.48]

    Для фотометрического анализа большое значение имеют окрашенные комплексные соединения, в которых полоса поглощения обусловлена главдым образом электронными переходами в лиганде. К этой группе относятся соединения красителей с различными металлами. Особое значение рассматриваемая группа имеет для фотометрического определения металлов, не обладающих хромофорными свойствами, как, например, бериллий, магний, алюминий, индий, олово и многие другие. Органические реактивы типа красителей имеют известное значение также для определения элементов, имеющих собственные хромофорные свойства. Правда, для этих элементов реакции с органическими красителями менее специфичны, но зато они более чувствительны. Например, определение меди в виде аммиаката, разумеется, более специфично, чем определение меди дитизоном. Присутствие серебра, цинка, кадмия и других элементов, не имеющих хромофорных свойств, не мешает определению меди в виде аммиаката. Однако чувствительность определения мала молярный коэффициент светопоглощения аммиаката меди (е 3+) равен 120 [15]. [c.77]

    С целью электрохимического концентрирования разработаны методики амальгамной полярографии для определения 10" —10" % примесей в цинке, алюминии, индии, олове, мышьяке, галлии, в урановых солях, в химически чистых реактивах, в биологических объектах, пищевых про дуктахит. п. [c.359]

    Колориметрическое определение олова в металлическом свинце с помощью фепилфлуорона основано на предварительном экстракционном выделении олова купфероном [233]. Описан вариант, по которому определение олова в цинке и свинце заканчивают фотометрированием его комплекса с пироллидиндитиокарбами-натом в четыреххлористом углероде [234]. Колориметрическое определение алюминия, бериллия, магния и урана в сплавах на основе циркония основано на предварительном экстракционном отделении циркония в виде купфероната [235]. Определение титана в металлическом бериллии с помощью тимола включает экстракцию купфероната титана [236]. Вместе с тем известен метод, основанный на непосредственном определении титана фотометрированием его купфероната, извлеченного 4-метилпентано-пом. Метод применен для определения титана в чугуне, стали, глине и никелевых сплавах [237], [c.246]

    Кристаллический фиолетовый образует с анионным подидным комплексом индия легко растворимое в бензоле соединение. Изучены оптические свойства раствора и предложена методика оиределения индия [351]. Сходный вариант описан для опреде- пения олова [352]. Бриллиантовый зеленый ирименен для определения бора [353], галлия в алюминии [354], таллия в породах и рудах [355], сурьмы в мышьяке [356]. Метиленовый голубой предложен для определения бора в стали [357], церия в железе п стали [358], а также в оксалатах тория и лантана [359] для определения сульфат-ионов [360]. Малахитовый зеленый использован для определения сурьмы в био,погическнх материалах [361]. Кверцетин применен для определения олова [362], стильбазо — для определения вольфрама [363], арсеназо — для определения урана [364, 365]. [c.253]

    В анализе горных пород малые количества мышьяка не создают затруднений, так как мышьяк (П1), остающийся в растворе после разложения образца горной породы, улетучивается во время выпаривания с соляной кислотой при обезвоживании кремнекислоты. Мышьяк (V) осаждается в виде основного арсенита железа или алюминия вместе с осадком от аммиака и, вероятно, целиком восстанавливается и улетучивается при последующем сожжении фильтра с осадком и прокаливании. Иное дело при анализе продуктов металлургического производства, навеску пробы которых обьгчно обрабатывают окисляющими растворами. Например, при анализе черных металлов присутствие мышьяка затрудняет определение в них фосфора при анализе сплавов цветных металлов присутствие мышьяка может помешать определению олова, сурьмы и меди. [c.302]

    Механическое полирование представляет собой процесс, принципиально мало отличающийся от шлифования и, по существу, является дальнейшим сглаживанием неровностей на поверхности металла более тонким абразивным материалом.. Полирование производят на сукне, фетре или бархате до полного удаления рисок, остающихся от шлифования. Во время полирования на полировальный материал непрерывно или периодически наносят суспензию воды с тонкоразмельченными абразивными веществами (окись алюминия, окись железа, окись хрома, окись магния и др.). При полировании мягких металлов (алюминий, магний, олово и их сплавы) на тонкую шлифовальную бумагу наносят слой парафина или раствор парафина в керосине. Механический способ полирования достаточно прост, поэтому широко распространен, однако имеет свои недостатки [46] трудность и длительность, значительный расход полировочного сукна, появление на шлифовальной поверхности (так же как и при шлифовании) деформированного наклепанного слоя, искажающего истинную структуру металла. Последнее нежелательно при микроэлектрохимических исследованиях, при испытании металлов на устойчивость к коррозионному растрескиванию и коррозионноусталостную прочность, при которых увеличение внутренних напряжений в поверхностных слоях металла может отразиться на результатах испытаний. Для удаления внутренних напряжений, связанных с шлифованием и механическим полированием, применяют термообработку, например отпуск при определенной температуре [49], ° С  [c.53]

    В сточных водах гальванических и травилыных отделений наиболее часто встречаются ионы следующих металлов меди, цинка, кадмия, алюминия, свинца, олова, хрома, марганца, железа и никеля и значительно реже серебра, ртути и золота. При определении концентрации отдельных видов ионов тяжелых металлов применяют в основном классические -методы количественного х шшческого анализа катионов [48], подвергая анализам пробу сырых сточных вод или выделенный из них осадок после прокаливания. Подробно аналитические методы анализа рассмотрены в книге Германовича [00]. [c.132]

    Существует еще один экспериментальный факт, говорящий в пользу концепции пассивности, обусловленной фазовым окислом. Г. В. Акимов [40] измерял потенциалы ряда металлов в нескольких растворах. Измерения производились как при непрерывной зачистке поверхности металла, погруженного в электролит, карборундовым диском, так и без обработки. Предполагается, что стационарные потенциалы многих металлов имеют определенную величину, связанную с наличием на поверхности электродов сплошной или пористой окисной пленки. Постоянное удаление пленки шлифовкой должно сдвигать потенциалы в отрицательную сторону. Это предположение подтвердилось, что видно из табл. VI,5 [15], где металлы расположены в порядке уменьшения изменения потенциалов в каждой из сред. Отсутствие изменений (нуль) относится к случаям, когда потенциал действительно не менялся при зачистке или когда наблюдалось некоторое облагораживание его за счет улучшения аэрации. Величины Дф в известной степени совпадают с химической природой окислов. Так, в 0,1 н. NaOH у алюминия, цинка, олова и свинца, окислы которых амфотерны и не стабильны в щелочных растворах, Аф мало. Труднее объяснить поведение некоторых металлов в 0,1 н. НКОз. [c.227]

    Большую рабочую поверхность электродов, вращающихся винтообразно, можно также использовать для определения предварительно сконцентрированных следов примесей. Из раствора цинковой пробы на опущенный в раствор цинковый стержень осаждаются все металлические примеси, потенциал которых более положителен, чем потенциал цинка. Таким образом, металлические примеси, собранные на поверхности цинкового стержня диаметром 6 мм на длине 60 мм, обыскриваются при винтообразном вращении стержня относительно противоэлектрода [7]. Элементом сравнения служит медь, которую добавляют в раствор анализируемой пробы в количествах, пропорциональных навеске пробы. Медь также осаждается на цинковый стержень вместе со следами примесей. Такая методика может применяться для определения в алюминии следов олова и свинца [8]. [c.98]

    Файнберг С. Ю. и Заглодина Т. В. Колориметрическое определение цинка и алюминия в олове и свинцово-оловянных припоях. Зав, лаб., 1945, 11, № 11-12, с. 1109—1112. Библ. 5 назв. 5925 [c.226]


Смотреть страницы где упоминается термин Алюминий определение в олове: [c.227]    [c.159]    [c.108]    [c.374]    [c.522]    [c.273]    [c.338]    [c.187]    [c.177]   
Химико-технические методы исследования (0) -- [ c.403 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий, определение в уране олова, свинца, сурьмы

Олово определение

Определение алюминия в олове и оловянных сплавах

Определение алюминия химическими олове и его сплавах

Определение тяжелых металлов (железа, алюминия, марганца, никеля, кобальта, олова, титана, висмута, молибдена, меди, ванадия, свинца и серебра)

Определение цинка, кадмия, алюминия, висмута, кобальта, марганца, олова, свинца, меди, магния, кремния, железа, мышьяка и сурьмы спектральным методом

Полярографическое определение свинца, олова, висмута, сурьмы, галлия, кадмия и цинка в алюминии амальгамным способом с накоплением

Радиоактивационное определение марганца, железа, меди, цинка, галлия, олова, мышьяка, серебра, кадмия и золота в алюминии

Спектральное определение алюминия агломератах олове

Спектральное определение алюминия олове

Спектральное определение алюминия, бора, висмута, галлия, железа, индия, кобальта, кремния, марганца, меди, мышьяка, никеля, олова, свинца, серебра и цинка в сурьме

Спектральное определение алюминия, бора, железа, магния, марганца, меди, никеля, олова, свинца, сурьмы, титана и хрома в карбиде кремния

Спектральное определение железа, кремния, меди, магния, титана, свинца, марганца, олова и серебра в алюминии

Спектральное определение кремния, железа, алюминия, олова и сурьмы в германии п его двуокиси

Спектрографическое определение железа, алюминия, марганца, меди, никеля, кобальта, олова, титана, висмута, молибдена, ванадия, свинца и серебра

Флуориметрическое определение алюминия в олове

Фотометрическое определение кальция в алюминии, свинце, цинке и олове

Фотометрическое определение олова в алюминии

Химико-спектральное определение алюминия, висмута, галлия, железа, золота, индия, кальция, магния, марганца, меди, никеля, свинца, сурьмы, олова, серебра, таллия, тантала, титана, хрома и цинка в германии, двуокиси германия и тетрахлориде германия

Химико-спектральное определение алюминия, висмута, цинка, магния, марганца, никеля, свинца, серебра, сурьмы, галлия, олова, хрома и меди в двуокиси кремния с применением полого катода

Химико-спектральное определение меди, свинца, висмута, галлия, серебра, золота, кобальта, никеля и алюминия в олове

Химико-спектральное определение серебра, алюминия, магния, индия, молибдена, циркония, железа, титана, меди, марганца, никеля, свинца, хрома, олова, висмута, галлия, кальция, цинка и сурьмы в трихлорсилане без применения гидролиза



© 2025 chem21.info Реклама на сайте