Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Марганец реакции иона

    Максимальная валентность марганца равна семи, однако известно много соединений марганца с меньшей валентностью. Самая устойчивая его окись, встречающаяся в природе,—окись марганца(1У). В своих бинарных соединениях с другими элементами, кроме кислорода, марганец в основном встречается в виде двухвалентных ионов Мп +. Соединения, содержащие марганец с максимальной валентностью (семь), очень похожи на соответствующие соединения хлора, вплоть до того, что соли их изоморфны и что и те и другие являются сильными окислителями. Все соединения марганца окрашены ионы Мп + дают слабо-розовую окраску, а ионы семивалентного марганца — фиолетовую. Реакции иона Мп + очень похожи на реакции ионов Сг + и Fe + — соседних по ряду элементов периодической системы. Основной характер окисей марганца в соответствии с общим правилом тем слабее, чем выше его валентность Mn(VI) и Mn(Vn) встречаются лишь в виде оксоанионов, обладающих свойствами ангидридов кислот. [c.651]


    При высоком pH электролита основное количество водорода образуется при разложении воды и восстановлении иона аммония. В результате последней реакции получается аммиак, с которым марганец дает растворимые комплексы типа Мп(ЫНз)п-504. Аммонийные соли и аммиак затрудняют образование твердой фазы. [c.281]

    Реакцию можно ускорить также вначале, если прибавить к раствору немного соли двухвалентного марганца. В соответствии с уравнением реакции (5) ионы дву> ва-лентного марганца должны в некоторой степени сдвигать равновесие влево. Это не имеет заметного отрицательного влияния из-за высокого окислительного потенциала ионов перманганата при переходе в двухвалентный марганец в кислой среде. [c.379]

    Для элементов побочных групп периодической системы, таких, как марганец, ртуть и медь, также можно наблюдать подобные реакции. Металлическая медь образует с гидратированным ионами Си+ и Си + две редокс-пары со стандартными по- [c.418]

    Приведем пример дробного обнаружения катионов кальция. Лучше всего его обнаружить в виде оксалата. В этом случае алюминий, хром, марганец, железо и другие катионы маскируются в виде комплексных оксалатов, легко растворимых в воде. Некоторые катионы тяжелых металлов — серебро, сурьма, ртуть, свинец, висмут не дают растворимых оксалатных комплексов, но осаждаются металлическим цинком. В раствор переходит ион цинка, не мешающий реакции на кальций и образующий комплексный оксалат. Стронции и барий не мешают реакции, так как осаждаются в виде сульфатов растворимость сульфата кальция 2,5 г/л, что позволяет уверенно обнаружить кальций в фильтрате в виде оксалата кальция после осаждения мешающих катионов. [c.133]

    При высоком pH электролита и, особенно, в приэлектродном слое, основное количество водорода образуется путем восстановления ионов КН4+ и частично разложения воды. В результате первой реакции получается аммиак, с которым марганец образует растворимые комплексы типа [Мп(ЫНз) ]504. Аммонийные соли и аммиак затрудняют образование твердой фазы гидроксида. [c.396]

    Уэллс [203] исследовал осаждение ряда солей металлов прп силикатном отношении 3,2, применяя недостаточное количество силиката, с тем чтобы вызвать лишь реакцию с ионами металла. Он обнаружил, что при применении двух солей металлов сразу можно было наблюдать относительно легкое образование осадка. Уэллс расположил металлы в следующий ряд по их способности к осаждению в сульфатных растворах медь, цинк, марганец, кадмий, свинец, никель, серебро, магний н [c.225]


    Оставшийся раствор, содержащий катионы магния Mg , марган-ца(П), железа(Ш) и висмут(1П), обрабатывают смесью растворов щелочи NaOH (6 моль/л) и 3%-го пероксида водорода и кипятят для удаления избытка пероксида водорода. Получают осадок гидроксидов Mg(0H)2, Bi(OH)3, MnO(OH)2 и Ре(ОН)з, который отделяют и обрабатывают раствором 2 моль/л азотной кислоты. В раствор переходят катионы Fe , Mg и висмут(1П), а в осадке остается МпО(ОН)2. Последний отделяют центрифугированием, растворяют в смеси азотной кислоты с пероксидом водорода при нагревании и в полученном растворе открывают марганец реакцией с диоксидом свинца РЬ()2 — раствор окрашивается в малиновый цвет вследствие образования перманганат-ионов MnO . [c.334]

    Из уравнения видно, что взаимодействие может произойти только в том случае, если в определенный момент времени в какой-либо точке пространства столкнутся между собой один ион МПО4, пять ионов Ре + и восемь ионов Н+. Вероятность одновременного столкновения четырнадцати ионов близка к нулю, и поэтому реакция по описанному механизму должна была бы протекать настолько медленно, что за измеримый промежуток времени нельзя было бы обнаружить в реакционной смеси продуктов реакции — ионов Мп + и Ре +. Между тем реакция идет практически мгновенно, что свидетельствует о другом механизме взаимодействия. В частности, было показано экспериментально, что восстановление перманганат-ионов происходит ступенчато, причем в процессе восстановления образуются ионы, содержащие марганец в степени окисления шесть, четыре и три. В последующем механизм реакций подобного типа будет рассмотрен более подробно. [c.370]

    В системах, где возникают такие радикалы (спирты, амины, некоторые непредельные соединения), ионы металлов переменной валентности проявляют себя как катализаторы обрыва цепей (см. гл. 13). Реакция ионов с пероксильными радикалами проявляет себя и в составе продуктов окисления, особенно на ранних стадиях окисления. Так, например, при автоокислении циклогексана единственным первичным продуктом окисления является гидропероксид Другие продукты, в частности спирт и кетон, появляются позднее как продукты распада гидропероксида. В присутствии стеаратов таких металлов, как кобальт, железо, марганец все три продукта (ROOH, ROH и кетон) появляются сразу с началом окисления и в начальный период (пока распад ROOH незначителен) образуются параллельно с постоянной скоростью. Соотношение скоростей их образования определяется катализатором. Причина такого поведения, очевидно, связана с быстрой реакцией взаимодействия R02 с катализатором. Таким образом, реакция пероксильньос радика- [c.518]

    Для анализа хромовых руд, хромистого железняка используют фотометрические методы, основанные на реакции ионов Сг(П1) с ЭДТА [466, 605] и с фосфорной и пирофосфорной кислотами [414]. При спектрофотометрическом определении хрома (0,02—0,15% Сг20д) с помощью дифенилкарбазида в рудах, содержащих марганец (0,1—0,5% МпО), получают заниженные результаты. Мешающее влияние марганца полностью устраняют добавлением ЭДТА, восстанавливающего Mn(VII) до Мп(П) [716]. Полярографический метод определения хрома в хромовых рудах описан в работе [975]. [c.163]

    Марганец. В 3 гл. VIII упоминалось о том, что в цехе выщелачивания, в кислой ветви, для окисления ионов двухвалентного железа в раствор добавляют двуокись марганца. В результате реакции VII в растворе накапливаются ионы двухвалентного марганца. Концентрация этих ионов в оборотном растворе электролиза постепенно повышается и может достигать 5—15 г/л. [c.450]

    При этом процессе семивалентный марганец, входящий в состав КМПО4, восстанавливается до двухвалентного, а четырехвалентная сера, входящая в состав NaaSOg, окисляется до шестивалентного состояния. Следовательно, эту окислительно-восстановительную реакцию можно разделить на две части окисление четырехвалентной серы до шестивалентной и восстановление семивалентного марганца до двухвалентного. В соответствии с основными положениями теории электролитической диссоциации формой существования семивалентного марганца в этом растворе является ион МпОГ, для двухвалентного марганца — ион Мп +, для четырехвалентной серы — ион sor, для шестивалентной серы — ион [c.55]

    Разложение пероксида водорода ускоряется катализаторами. Если, например, в раствор пероксида водорода бросить немного диоксида марганца МпОз, то происходит бурная реакция и выделяется кислород. К катализаторам, способствующим разложению пероксида водорода, принадлежат медь, железо, марганец, а также ионы этих металлов. Уже следы этих металлов могут вызвать распад Н2О2. [c.474]

    Так как марганец в своих соединениях имеет разную степень окисления (от +2 до +7), то соединения марганца должны обладать оки> лнтельно-восстановительными свойствами. Те соединения или те ионы, в которых марганец имеет низшую степень окисления, очевидно, будут восстановителями, т. е. сами будут окисляться. Те же соединения или ионы, в которых марганец имеет высшую степень окисления, будут окислителями, т. е. сами будут восстанавливаться до соединений или ионов с низшей степенью окисления. Наконец, соединения илн ионы с промежуточной степенью окисления (МпОг, НоМпОд, Н2МПО4) будут либо восстановителями, либо окислителями — все зависит от условий протекания реакции и веществ, с которыми они взаимодействуют. Например  [c.205]


    Марганец занимает особое положение среди других металлов второй группы примесей. В исходном электролите марганец содержится в виде Мп504 и его действие аналогично действию натрия, магния и калия. В процессе электролиза двухвалентный марганец окисляется на аноде до трех-, четырех-, шести- и семивалентного. Марганец, окислившийся у анода в двуокись, выпадает в шлам, ионы шести- и семивалентного марганца диффундируют к катоду, где снова восстанавливаются до двухвалентного марганца и т. д. протекание этих окислительно-восстановительных реакций снижает выход по току. Помимо этого, ионы шестИ и семивалентного [c.59]

    Протекание реакций диспропорционирования сопровождается одновременным увеличением и уменьшением степени окисления атомов одного и того же элемента. При этом исходное вещество образует соединения, одно из которых содержит атомы с более высокой, а другое с более низкой степенями окисления. Очевидно, эти реакции возможны для веществ, содержащих атомы с промежуточной степенью окисления. Примером может служить превращение манганата калия К2МПО4, в котором марганец имеет промежуточную степень окисления +6 (в примере между +7 и +4). Раствор этой соли имеет красивый темно-зеленый цвет (цвет иона МПО4 ), однако цвет раствора превращается в бурый. Это выпадает осадок МпОз и образуется ион ШОГ. Протекает реакция [c.150]

    Перекись водорода при растворении осадка 2, содержащего соединение марганца (IV), способствует его быстрому растворению в азотной кислоте. Разложение избытка Н2О2 необходимо для успешного проведения поверочной реакции на марганец. Ионы марганца. обнаруживают окислением Мп+" -нонов в МпОГ-ионы при помощи РЬОа (см. 28, стр. 261). [c.275]

    Одновременно с этими протекает также реакция 2Н+-Ь2е—> — -Нг. Выделение металла с практически приемлемым выходом по току в данном случае возможно при условии, что разряд ионов водорода будет искусственно затруднен (тем более, что перенапряжение водорода на хроме мало). Это достигается путем максимального повышения pH. Однако уже при рН = =3 образуются гидроксид Сг(ОН)з и основные соли, сильно загрязняющие металл. Выделение водорода ведет к повышению pH приэлектродного слоя. Поэтому так же, как и марганец, хром получают из сильно буфферированного аммонийными солями комплексного электролита. Таким путем удается получать плотные толстые осадки хрома как из сульфатных, так и из хлоридных электролитов, причем выход по току приближается к 50%. Процесс проводят при обязательном разделении католита и анолита диафрагмой, с свинцово-серебряными анодами. Состав электролита (в г/л) 15 СгЗ+ и 15 Сг +, 200—270 (NH4)2S04, 250—280 свободной серной кислоты в анолите, что соответствует извлечению из 1 л питающего раствора около 100 г хрома. Процесс ведут при катодной плотности тока до [c.401]

    Если металлы имеют равновесные потенциалы отрицательнее водорода, то, как можно предсказать из ряда напряжений, восстановление ионов водорода до водорода более предпочтительно. Чем потенциалы отрицательнее, тем труднее достигнуть высокой катодной эффективности. Но такой отрицательный металл, как Zn ( zn2+ /zn=—0,76 В), может осаждаться из азотнокислой ванны с эффективностью 95%, в то время как эффективность Сг составляет лишь 10—15% при осаждении из ванны Сг0з-ЬН2504. Даже марганец ( мп2+ /мп = —1,18 В) может быть осажден из водного раствора, но для металлов с более отрицательными потенциалами, например алюминия, это невозможно. Единственная катодная реакция — выделение водорода. По этой причине алюминий может быть выделен только из неводных органических растворов или расплавленных солей. [c.21]

    Марганец является компонентом вишнево-красной супер-оксиддисмутазы из Е. соИ [уравнение (8-61) см. также дополнение 10-3]. Этот фермент с мол. весом 40 000 содержит два атома Мп(1П). Аналогичные ферменты были выделены из митохондрий куриной печени и из дрожжей. Дрожжевой фермент представляет собой тетрамер каждая субъединица с мол. весам 24 000 содержит один атом связанного марганца ". Белок, известный под названием авиманганина, по-ви-димому, является неактивной формой куриного фермента. Интересно, что цитоплазматические супероксиддисмутазы из тех же источников являются u-Zn-ферментами (дополнение 10-3)Д. Ионы марганца в супероксиддисмутазах в ходе катализа реакции, описываемой уравнением (8-61), как полагают, совершают переходы между состояниями окисления II и III. То же, вероятно, относится к содержащему марганец белку (или нескольким таким белкам) в хлоропластах [урав- [c.52]

    Наряду с разрывом углерод-углеродных связей ионы металлов способствуют расщеплению связей углерод—водород. Для этого необходимо, чтобы ион металла координировался с субстратом в строго определенном месте. Целый ряд многозарядных катионов (в порядке эффективности медь(П), никель(П), лантан(1П), цинк, марганец(П), кадмий, магний и кальций) катализирует бромирование этилацетоацетата и 2-карбоэтокси-циклопентанона. Аналогично ионы цинка катализируют иодирование пирувата и о-карбоксиацетофенона. В этих процессах галогенирования кетонов скоростьлимитирующей стадией является образование енола с переносом протона на общее основание. Как и при декарбоксилировании, ион металла катализирует реакцию за счет стабилизации отрицательного заряда, генерирующегося в ходе разрыва связи углерод—водород. Относительная каталитическая эффективность перечисленных выше катионов изменяется в том же порядке, что и устойчивость их комплексов с салициловым альдегидом, а также согласуется с ено--лятным механизмом каталитического декарбоксилирования. [c.224]

    Окисление -аскорбиновой кислоты помимо меди катализируют ионы магния [40], серебра. Следует отметить, что кальций, марганец, железо, никель и кобальт почти не обладают каталитическими свойствами в реакциях окисления аскорбиновой кислоты кислородом воздуха [26], а в безводном спиртовом растворе или других певодных растворах йод и другие галогены не реагируют с -аскорбиновой кислотой. Влияние pH на кинетику окисления -аскорбиновой кислоты подвергалось подробному исследованию [41 ]. В отсутствие катализаторов окисление кислородом воздуха не идет и растворы -аскорбиновой кислоты обладают стойкостью к умеренному нагреванию. Двуокись углерода и сернистый ангидрид предохраняют -аскорбиновую кислоту от окисления они применяются для ее стабилизации. [c.23]

    Результаты опытов по окислению /г-ксилола в присутствии кобальтмарганецбромидного катализатора (рис. 3.26) позволили впервые проследить закономерности изменения состава продуктов реакции и связанные с ими изменения валентных состояний кобальта, марганца и брома. В реакционной смеси на отдельных стадиях окисления одновременно присутствуют кобальт и марганец в окисленной и в восстановленной формах, а также бром-ион. Это указывает, что наряду с известными реакциями (3.9) —(3.11) [c.102]

    Полученные данные позволили предположить, что активной формой катализатора может быть двухъядерный комплекс, содержащий кобальт, марганец и бром, в который в качестве лигандов входят исходные и промежуточные продукты реакции , при этом наиболее активные комплексы формируются, когда в-реакционной среде соотношение 2 Ме +] Е[Ме2+] в стационарных условиях находится в пределах 0,4—0,8, а обшее содержание кобальта в 2—8 раз больше, чем марганца. Механизм катализа реакции окисления можно представить в следующем виде (лигандное окружение ионов металлов в комплексах не показано)  [c.108]

    Таким образом, прибавленный к раствору марганец полностью регенерируется и на реакцию не расходуется, сильно ускоряет реакцию. В перманганатометрии одним продуктов реакции окисления щавелевой кислоты являются и Мп , которые по мере образования в растворе ускор процесс реакции. Такие реакции называют аетокаталиттест Первые капли перманганата при титровании горячего под ленного раствора щавелевой кислоты обесцвечиваются медле По мере образования небольшого количества ионов М [c.298]

    Более благоприятно условие для осаждения марганца, когда в растворе имеются гидроксильные ионы, как это имеет место в аммиачном растворе. Приба1вление брома к такому раствору обыкновенно вызывает немедленное осаждение некоторого количества марганца, но вследствие действия бром-а на аммиак или аммонийную соль раствор обычно приобретает кислую реакцию,, и тогда осаждение неполно. Чтобы осадить весь марганец посредством аммиака и брома, лучше всего поступать следующим образом. [c.248]


Смотреть страницы где упоминается термин Марганец реакции иона: [c.127]    [c.91]    [c.80]    [c.197]    [c.186]    [c.347]    [c.199]    [c.135]    [c.165]    [c.273]    [c.260]    [c.281]    [c.225]    [c.127]    [c.276]    [c.342]    [c.456]    [c.247]    [c.161]   
Качественный химический анализ (1952) -- [ c.276 , c.572 ]




ПОИСК





Смотрите так же термины и статьи:

Аналитические реакции катионов третьей группы (ионы алюминия, хрома, железа, марганца и цинка)

Марганец реакции

Реакции и открытие ионов марганца (II) (Мп)

Реакции ионов марганца

Реакции ионов марганца



© 2025 chem21.info Реклама на сайте