Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олефины Этиленовые углеводороды полимеризация

    Концентрирование и разделение фракций олефинов. Этиленовая фракция, полученная прн разделении газов пиролиза, часто содержит до 2—3% метана и этана, а без очистки от ацетилена до 1—27о этого углеводорода. На современных установках качество этилена значительно выще, поскольку для его полимеризации в полиэтилен требуется чистота 99,9% и более. [c.51]

    Действительно, типичным примером термической полимеризации является полимеризация этилена под высоким давлением в отсутствие фосфорной кислоты при 330° С [5]. Продуктом этой реакции явилась смесь углеводородов, содержавшая 8% парафинов, 60% олефинов и 32% нафтенов ароматика в смеси отсутствовала Наиболее характерно в этом продукте термической полимеризации, очевидно, высокое содержание в нем олефинов (до 60%). Однако еще более ярко выражена эта характерная особенность в типично каталитической полимеризации этиленовых углеводородов по Бутлерову (с разбавленной серной кислотой), по Кондакову [c.229]


    При крекинге вместе с молекулами предельных углеводородов получаются и олефины. Установлено, что при термическом крекинге предельных углеводородов изомеризации практически не наблюдается, поэтому бензины имеют низкие октановые числа. Этиленовые углеводороды термически более устойчивы и крекируются труднее. Их превращение зависит от температуры и давления При сравнительно невысоких температурах и повышенных давлениях олефины более склонны к полимеризации, [c.242]

    Чистота исходного изобутилена существенно влияет на его полимеризацию. Низшие олефины (этилен, пропилен) заметного влияния на процесс пе оказывают, но высшие этиленовые углеводороды, начиная с н-бутилена, замедляют скорость реакции и приводят к получению полимера с более низким молекулярным весом (рис. 25) такое же действие наблюдается при добавлении димера и тримера изобутилена. [c.75]

    Ненасыщенные углеводороды в зависимости от степени насыщения, т. е. количественного соотношения между атомами углерода и водорода, разделяются на отдельные подгруппы. Углеводороды подгруппы этиленового ряда, или олефины, содержат на два атома водорода меньше, чем соответствующее насыщенное соединение, и характеризуются наличием двойной связи между атомами углерода —НС = СН—. Олефины весьма реакционноспособны и легко вступают в реакции присоединения, окисления и полимеризации. [c.37]

    Книга представляет собой монографию по синтезу и свойствам стереорегулярных полимеров, в которой собран и систематизирован обширный материал по линейной и стереорегулярной полимеризации и сополимеризации этиленовых и ацетиленовых углеводородов, виниловых соединений, в том числе виниловых эфиров и акрилатов, и окисей олефинов. Приведен краткий обзор теории радикальной и ионной полимеризаций и подробно рассмотрены вопросы каталитической полимеризации и механизм таких реакций, в том числе на гетерогенных катализаторах Циглера — Натта. Особое внимание уделено способам получения и свойствам катализаторов для стереорегулярной полимеризации. Рассматриваются также вопросы очистки полимеров, их физические и механические свойства. В книге содержится обширная библиография. [c.127]

    Мы видим, что кроме первичных реакций диссоциации появляются реакции, сокращающие число углеводородных молекул. Это реакции конденсащш и полимеризации — конденсации для тяжелых этиленовых углеводородов и полимеризации для легких олефинов. Поэтому можно предвидеть, что увеличение давления уменьшает количество газообразных продуктов в пользу идких, т. е. дает как раз требуемый от крэкинга результат и увеличивает выход легкой бензиновой фрак,ции. [c.269]


    Наоборот, присоединение олефинов к ароматическому остатку йвляется очень пригодным методом алкилирования.. Выяснилось, однако, что работа с хлористым алюминием по методу Фриделя— Крафтса собственно не представляет преимуществ тех же результатов и дешевле достигают с серной или фосфорной кислотой. Правда, Броше [1009] ранее еще получил из бензола и н-1-гексена с концентрированной серной кислотой 2-фенил-гексан таким образом, в самом начале было показано, что при этой реакции никогда нормальных боковых цепей не получается, так как присоединение радикала происходит всегда к наименее оводороженному атому углерода. Трюффо [1010], изучая влияние фосфорной кислот ты, установил, что при этих условиях начинает преобладать полимеризация этиленовых углеводородов. Особенно легко и гладко реагирует бензол с циклогексеном, причем с хорошим выходом [c.358]

    Реакции разложения этиленовых углеводородов должны итти значительно труднее, чем парафинов. Теоретически здесь более вероятны реахедии полимеризации, по крайней мере, для низших олефинов. [c.465]

    Полимеризация этиленовых углеводородов при действии серной кислоты была открыта в 1877 г. и изучена А. М. Бутлеровым, а в дальнейшем исследовалась А. Е. Фаворским. В 1932—1937 гг. С. С. Наметкиным установлено, что одновременно с описанной бутлеровской полимеризацией идет и иная гидродегидрополи-меризаиия , ведущая к превращению олефина в смесь полимерных предельных и непредельных углеводородов. [c.73]

    Присоединение аммиака к этиленовым углеводородам происходит только пр,и повышенных давлении и температуре в присутствии катализаторов. Однако эта каталитическая реакция осложняется побочными процессами и потому амины получаются с малыми выходами. Например, при проведении олефина (этилена, пропилена, додецилена) с аммиаком над кобальтовым катализатором при 300—350° и давлении 100—200 атм основная масса образующегося амина дегидрируется в нитрил (наряду с этим протекают также реакции крекинга и полимеризации)  [c.37]

    Этиленовые углеводороды (олефины), обладающие высокой реакционной способностью, широко применяются для промышленного синтеза множества ценных продуктов. Промышленной переработке подвергают главным образом этилен, пропилен, бутилены и бутадиен. В основе переработки их лежат процессы гидратации, окисления, хлорирования, полимеризации, оксосинтеза, окислительного аммоноли-за и другие, протекающие как реакции электрофильного присоединения по ненасыщенным углерод-углеродным связям. [c.288]

    Полосы поглощения в ближней ультрафиолетовой области широко применяются при анализе ароматических соединений и диолефинов. Дальнейшие приложения спектральных данных излояадны в недавно выполненных исследованиях. В качестве примера укажем на возможность оценки содержания сильно разветвленных олефинов, в частности теТразамещенных этиленовых углеводородов, в смесях олефинов, полученных полимеризацией пропилена в присутствии кислотных катализаторов, по измерению поглоще- [c.12]

    Н. М. Чирков и сотр. [166] исследовали зависимость скорости и глубины полимеризации от концентрации и состояния сернокислых катализаторов. При этом С. С. Наметкин и Л. Н. Абакумовская открыли новый тип превращения этиленовых углеводородов — реакции гидродегидро-полимеризации. Р. Р. Галле и Б. Н. Парфенович [177] нашли, что фосфорная кислота, нанесенная в определенных концентрациях на активированный уголь, представляет в 5—6 раз более активный и одновре-меппо с этим более селективный катализатор полимеризации изобутилепа, чем жидкая ортофосфорная кислота. Одними из первых эти авторы применили для полимеризации олефинов кислые фосфаты. А. В. Тоичиев и В. П. Андронов [178] показали, что фторфосфорные кислоты по каталитической активности располагаются в следующий ряд  [c.242]

    Помимо нафтенов общую с ни.ми формулу (С Нг ) имеют углеводороды этнл нового ря la (олефины или алкилены) они встречаются в нефтях сравнительно в небольших количествах и—менее всего в нафтеновых. Йодные числа дестиллятов обычно низки—они возрастают с повышением температуры кипения фракций. Можно предположить, что в масляных дестиллятах содержится больше этиленовых углеводородов, чем в легких, но есть опасение, что они могли образоваться во время перегонки за счет частичного крекинга. По своей структуре они отличаются от нафтенов наличием открытой цепи, в которой два углерода связаны между собой двойной связью. Это обстоятельство обусловливает большую их способность к реакциям присоединения, реакциям окисления и уплотнения. Они присоединяют водород, гидроксил, галонды,.галоидоводородные кислоты и др. С концентрированной серной кислотой они образуют алкил-серную кислоту, которая при перегонке с большим количеством воды распадается на соответствующий алкилу спирт и серну кислоту. При действии же серной кислоты, особенно при высоких гомологах, имеют место процессы полимеризации. Фтористый бор, хлористый алюминий, хлористый цинк действуют на алкилены Полимеризующе. При [c.12]


    Кромо гексанов, жидкий продукт содержал 8,2 % пентанов, 4,5% гептанов, 9,6% октанов и около 14% олефиновых углеводородов. Необходимость добавления этилена небольшими порциями очевидна из рассмотрения результатов опыта, который проводился практически в тех же условиях, что описанный вышо (505° и 330 ат), с той лишь разницей, что здесь осуществлялся однократный проход изобутан-этиленовой смсси (молярное отношение 2,5) вместо рециркуляции углеводородного потока и добавки этилена 32 порциями в первом случае [13]. Жидкий продукт (124 % вес. на этилен) содержал только 17,5% гексанов (7% от теоретического), из которых только 30% составлял 2,2-диметилбутан. Октаны, образование которых проходило, по-видимому, через реакцию с 2 молями этилена, были получены с выходом 10% от теоретического. Наибольшую часть жидкого продукта (24%) составляли пентаны, из которых 86% приходилось на долю н-пентана. Но менее 12% жидкого продукта реакции составляли олефины. Для проведения реакции между изобутаном и изобутиленом при 486° потребовалось весьма высокое давление — 562 ат [32]. Жидкий продукт составлял только 35% вес. на изобутилен. Он содержал не только 34% октанов (выход 6%), но также 32,7% октенов. Присутствие последних,- кажется, скорее подтверждает предположение, что образование олефинов включает как стадию реакции диспропорционирование промежуточных радикалов, а ие полимеризацию исходного олефина. При димеризации изобутилена при 370—460° и давлении 38 — 376 ат образуется 1,1,3-триметилциклопентан, но не октен [30]. [c.307]

    Реакции Циглера открывают совершенно новые пути использования олефинов синтез полиэтиленов и димеров олефинов для превращения в синтетические каучуки и ароматические углеводороды, получение первичных спиртов, синтетического волокна и т. д. Полимеризация этилена в смазочные масла в Германии проводится с 95—99% этиленовой фракцией путем обработки ее, после очистки от кислорода и сернистых примесей, хлористым алюминием при 180—200° и 10—25 ат. Давление в автоклавах при этом процессе приходится регулировать, так как оно непрерывно растет из-за образования газов (метана, этана и других углеводородов). Сырой полимеризат после дегазации нейтрализуют при 80—90 взвесью извести в метаноле (разложение А1С1,-комплекса), фильтруют центрифугируют. Из остаточных газов выделяют этилен, который поступает обратно на полимеризацию. Для обеспечения низкой температуры застывания и пологой температурной кривой вязкости к таким смазочным маслам прибавляют эфиры адипиновой кислоты или другие добавки [18]. [c.597]

    В 1997 г институтом ВНИИОС совместно с НИИграфит по заданию Минатома РФ были разработаны исходные данные ддя ТЭО установки мощностью 2,5 тыс.т/год по получению кокса марки КНПС на Томском нефтехимическом комбинате на основе новых технических решений из альтернативного сырья - смеси фракций газового конденсата Уренгойского месторождения с добавкой керосино-газойлевой фракции малосернистой нефти. Установка базировалась на процессе пиролиза этиленового производства с получением тяжелых смол пиролиза бензиновой и дизельной фракции, а также фракции, выкипающей выше 200 С, с их дальнейшим коксованием с получением коксов марок КНГ, КЗК с направлением на пиролиз дистиллата коксования. В дальнейшем по традиционной схеме осуществляется двухстадийный процесс пиролиз-коксование в кубах. В процессе пиролиза протекает пиролитическая ароматизация исходного сырья с получением смолы, направляемой на коксование. В состав установки пиролиза входит печь пиролиза, реакционная камера, гидравлик и система выделения отдельных фракций, таких как легкое масло и зеленое масло. В пиролизной печи происходит разложение углеводородного сырья при 690-710 С с образованием пирогаза, содержащего низшие олефины и диеновые углеводороды, жидких продуктов, состав которых характеризуется высоким содержанием ароматических, алкенил- ароматических и конденсированных соединений. В реакционной камере происходит полимеризация, конденсация и уплотнение продукгов первичного распада сырья с образованием компонентов целевой смолы для процесса коксования, таких как полициклические ароматические соединения, асфальтены и карбоиды. Время пребывания потока в реакционной камере составляет 20-30 сек. За счет протекания экзотермических реакций уплотнения температура в [c.143]

    Непредельные углеводороды этиленового ряда относятся к важнейшим классам соединений нефтехимического синтеза. Благодаря высокой реакционной способности олефиновые углеводороды широко применяются на практике. Детальное изучение кинетики и механизма реакций с участием олефинов возможно только при знании их химической структуры. Направление и скорость таких реакций, как полимеризация, изомеризация, окисление, металлирование, алкилиро-вание и другие, непосредственно зависят от положения двойной связи в молекуле алкена и существования цис-транс-изомерии. Таким образом, структурные исследования олефиновых углеводородов, особенно промьпиленных образцов олефинов, имеют как теоретическое, так и практическое значение. [c.48]

    Детально эта реакция на протяжении многих лет изучалась С. В. Завгородним. Им была изучена реакция 13 органических кислот (пяти жирных одноосновных, трех двухосновных, двух ароматических и трех га-лоидуксусных) с 18 непредельными соединениями (шестью олефинами, одним циклоолефином, одним арилолефином, тремя галоидолефинами, двумя алкилвиниловыми эфирами, тремя аллилалкиловыми эфирами, одним терпеном и одним диеновым углеводородом). В результате этих исследований показано, что фтористый бор является весьма активным катализатором для реакции присоединения органических карбоновых кислот к этиленовым соединениям. Он может применяться или самостоятельно или в виде молекулярных соединений с простыми эфирами, или с органическими и минеральными кислотами. В тех случаях, когда нет большой необходимости в изучении количественной стороны процесса, фтористый бор можно применять самостоятельно или в виде молекулярного соединения с уксусной кислотой. Однако лучшим катализатором во всех отношениях является этилэфират фтористого бора, который позволяет вести реакцию присоединения кислот к этиленовым соединениям в относительно мягких условиях, не вызывающих побочных процессов (главным образом, полимеризации олефинов), и получать эфиры с выходом 40—95% [44]. [c.193]

    Из других реакций, кроме гидрирования и полимеризации, следует упомянуть о циклизации олефинов. Циклизация как этиленовых, так и метановых углеводородов термодинамически воз можиа при температурах гидрогенизации, и в продуктах реакции парафинового сырья можно установить наличие циклопентановых и циклогексановых углеводородов. Одиако значительного развития УТИ реакции не получают. [c.437]


Смотреть страницы где упоминается термин Олефины Этиленовые углеводороды полимеризация: [c.719]    [c.296]    [c.227]    [c.230]    [c.452]    [c.262]    [c.262]    [c.492]    [c.44]    [c.44]    [c.86]    [c.86]    [c.492]   
Органическая химия 1971 (1971) -- [ c.51 , c.384 , c.386 ]




ПОИСК





Смотрите так же термины и статьи:

Олефины полимеризация

Полимеризация углеводородов

Углеводороды этиленовые

Углеводороды этиленовые см Олефины

Этиленовые

Этиленовые углеводороды олефины замещенные, полимеризация

Этиленовые углеводороды олефины полимеризация ионная



© 2025 chem21.info Реклама на сайте