Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергетический барьер вращения Энергия

    Для молекул более сложных картина энергетического профиля соответственно усложняется. Высота энергетического барьера вращения Uq для органических молекул составляет 1— 4 ккал/моль, в зависимости от ближайшего окружения звена (заместители, двойные связи, полярные группы и др.). При небольшом запасе энергии (при низких Г), недостаточном для преодоления барьера, наблюдается неполное ограниченное вращение близ потенциального минимума, которое не выходит за пределы некоторого значения ф, соответствующего U х кТ. [c.306]


    Конформации, в которых заместители расположены наиболее далеко друг от друга в пространстве, обладают относительно меньшей внутренней энергией и называются заторможенными. Напрнмер, внутренняя энергия заслоненной конформации этана на 12 кДж/моль выше, чем энергия его заторможенной конформации (рнс. 3.3). Эта величина энергии составляет энергетический барьер вращения, происхождение которого связано с действием сил отталкивания, возникающих между электронами о-связей С—Н прн их сближении в заслоненной конформации. Взаимодействие противостоящих связей является одним нз факторов, затрудняющих свободное вращение вокруг одинарных связей. Связанное с этим увеличение энергии системы называют торсионным напряжением. [c.58]

    Рассмотрено также и уравнение для энергии, которое включает вклад от собственного тормозящего потенциала (ф) [22]. Этот тормозящий потенциал никоим образом не относится к несвязанным взаимодействиям, а присущ каждой претерпевающей вращение связи. Полуэмпирические расчеты энергии для этана и его замещенных производных показывают, что одними только несвязанными и дипольными взаимодействиями нельзя полностью объяснить энергетический барьер вращения вокруг связи С—С [7, 31—34]. Часть барьера можно объяснить только в том случае, если приписать самой связи С—С некий собственный тормозящий потенциал [c.369]

    Термодинамически равновесный клубок характеризуется равновесным набором взаимных расположений звеньев, что, в свою очередь, обусловлено энергетическим состоянием системы— равновесием между энергией броуновского движения звеньев и энергетическими барьерами вращения вокруг валентных связей цепи. [c.87]

    Мы уже касались других молекулярных свойств, которые представляют особый интерес для исследователя макромолекул, а именно формы молекул. В типичной синтетической цепной молекуле скелет состоит из последовательного ряда простых связей, и возможность вращения вокруг этих связей позволяет молекуле принимать большое число конформаций. Очевидно, что в таком случае мы должны рассматривать не форму молекулярной цепи, а функцию распределения таких форм или же некоторые конкретные средние величины. Среднее растяжение цепной молекулы в растворе дает нам важные сведения об относительной энергии возможных конформаций и о взаимодействии полимера с растворителем. Кроме этого, с помощью данных, отражающих поведение молекулярного клубка, подвергнутого действию переменных напряжений, можно получить информацию о высоте энергетических барьеров вращения вокруг связей цепи главных валентностей. [c.18]


    Кроме того, эти поправки зависят от энергии возбуждения Д . Физический смысл Д состоит в следующем. Пусть ноле вдоль оси X. Тогда дополнительный орбитальный магнетизм должен появляться за счет вращения электронов вокруг оси х. Другими словами, орбитали неподеленной пары и орбиталь неспаренного электрона должны вращаться в плоскости ух, перпендикулярной X. Однако орбитали жестко ориентированы относительно молекулярных осей сильными электростатическими и обменными взаимодействиями, и, чтобы заставить их вращаться, надо преодолеть энергетический барьер, равный энергии возбуждения электронов неподеленной пары на орбиталь неспаренного электрона. [c.24]

    Энергетика вращательной диффузии складывается из двух составляющих энергии образования дырки, т. е. флуктуации свободного объема, и кинетической энергии частицы, достаточной для преодоления активационного барьера вращения в дырке. Энергия активации измеренная при постоянном давлении, содержит оба эти вклада энергия активации Е , измеренная при постоянном объеме, не содержит первой составляющей и является истинным энергетическим барьером вращения. [c.221]

    Энергия барьера вращения вокруг связи С—С в этане составляет 3 ккал/моль. Нарисуйте молекулу этана, отвечающую минимальному и максимальному энергетическим состояниям. [c.22]

    Методами статистической термодинамики было показано значение энергетических барьеров внутреннего вращения, а также числа симметрии (ст) молекулы для энтропии и энергии Гиббса (но не для энтальпии и теплоемкости). [c.215]

    Метод групповых уравнений применим для расчета энтальпии (Яг — Яо), функции энтальпии (Яг — Яо)/Г, теплоемкости (Ср), энтропии (5г), функции энергии Гиббса (Gr — Яо)/г и связанных с ними величин. При расчете последних двух функций необходимо учитывать различие степени симметрии сопоставляемых веществ. Для повышения точности результатов вносят также поправку, отражающую влияние различия энергетических барьеров внутреннего вращения, если для этого имеются необходимые данные .  [c.268]

    Высокие значения предэкспоненциальных факторов реакций диспропорционирования, возможно, связаны с меньшей ограниченностью движения в переходном состоянии его по сравнению с конфигурацией голова к хвосту . Но так как скорости реакций диспропорционирования и рекомбинации радикалов близки по своим величинам и в случае реакций рекомбинации в активированном комплексе надо допустить-полную свободу вращения радикалов, то логично допустить, что переходное состояние для реакций диспропорционирования и рекомбинации является одинаковым. Но, приняв это,, мы должны допустить, что перестройка активированной молекулы в направлении к продуктам диспропорционирования происходит после прохождения через переходное состояние. Вследствие высокой экзотермичности процесса в целом энергетические барьеры перестройки могут не превыщать нормального уровня энергии радикалов и поэтому не проявляются экспериментально в температурных коэффициентах реакции. [c.243]

    Конформационные превращения в молекуле алкана определяются соотношением между потенциальным барьером внутреннего вращения (/ ) вокруг углерод — углеродной связи и кинетической энергией теплового движения. Значение энергетического барьера Е< кТ (при комнатной температуре энергии теплового движения молекул — 3,5 кДж/моль) соответствует свободному внутреннему вращению. Если Е кТ, то внутреннего вращения вокруг углерод — углеродной связи не происходит, а имеют место крутильные колебания. Барьер внутреннего вращения в этане составляет 12 кДж/моль [27]. В свободных молекулах изобутана барьер внутреннего вращения групп СН( равен 15 кДж/моль. [c.24]

    Это условие является приближенным, так как, помимо кинетической энергии поступательного движения, сталкивающиеся частицы обладают вращательной и колебательной энергией, которые также могут перейти в потенциальную энергию и тем самым облегчить преодоление энергетического барьера. Наоборот, часть кинетической энергии ти1/2 может в момент соударения перейти в энергию вращения или колебания и будет потеряна для совершения химического процесса. Однако условием [c.76]

    Напомним (ср. гл. I), что барьеры вращения могут быть рассмотрены на примере низкомолекулярных соединений. Для этана СНз—СНз структура имеет, например, вид, изображенный на рис. IV. 7 каждая группа СНз может вращаться вокруг простой связи С—С. Энергетически выгодны три конформации, одна из которых представлена на рис. IV. 7, б. В этих положениях с минимумом потенциальной энергии (Умин атомы водорода двух групп СНз наиболее удалены друг от друга. При повороте группы СНз атомы водорода обеих групп сближаются и для преодоления обменных сил отталкивания необходимо затратить дополнительную энергию, а именно энергию активации. Три потенциальных максимума соответствуют трем конформациям молекулы этана, возможным при полном повороте группы СНз на 360°, когда атомы водорода двух групп СНз находятся на наиболее близком расстоянии, т. е. друг против друга (этим конформациям соответствует максимальная потенциальная энергия Умакс). Разность /.макс и [c.130]


    Чтобы понять причину гибкости линейных макромолекул, рассмотрим строение молекулы этана. Ее можно представить как две группы —СНз, соединенные одинарной связью. Из органической химии известно, что группы —СНз в молекуле этана способны вращаться вокруг одинарной связи С—С. Это хорошо согласуется с тем, что, например, симметричный дихлорэтан не имеет изомеров. Однако при низких температурах свободное вращение вокруг связи С—С затруднено, так как не все возможные положения групп —СНз относительно друг друга равноценны в энергетическом отношении. Такая неравноценность обусловлена тем, что при повороте одной группы —СНз по отношению к другой изменяются расстояния между атомами водорода обеих групп. Это ведет к изменению энергии взаимодействия между группами —СНз. Поэтому при низких температурах —СНз-группы не вращаются вокруг оси С—С, а лишь вращательно колеблются на сравнительно небольшой угол. Только при достаточно высокой температуре благодаря увеличению кинетической энергии может быть преодолен энергетический барьер и группы —СНз будут свободно вращаться вокруг соединяющей их связи. [c.427]

    Кун, Марк и Гут в первом приближении полагали, что вращение вокруг связей С—С в макромолекуле может происходить совершенно свободно, и считали углеводородные молекулы весьма гибкими нитями, которые могут принимать любую форму, совместимую с постоянством валентного угла. Однако Я. И. Френкель и С. Я- Бреслер показали, что и в этом случае, как и для молекулы этана, необходима некоторая энергия активации, т. е. необходимо преодолеть энергетический барьер, зависящий от природы атомов, из которых построена цепь. Иными словами, вращение вокруг связи С— С возможно только при достаточно высоких температурах. Такая зависимость свободы вращения от температуры становится понятной из следующих рассуждений. [c.428]

    С повышением температуры возрастает энергия теплового движения, равная, как известно, для каждой частицы в среднем произведению kT (где A —постоянная Больцмана, Г —абсолютная температура). Пока величина kT значительно меньше энергетического барьера, группы атомов только вращательно колеблются около положения равновесия. С возрастанием температуры амплитуда этих колебаний увеличивается и, когда значение kT становится соизмеримым со значением энергетического барьера, начинается вращение и молекулы приобретают гибкость. Естественно, что при понижении температуры наблюдается обратное явление — [c.428]

    На рис. 10.13 показана схема перекрывания орбиталей, ведущего к образованию связей в молекулах насыщенных углеводородов. Перекрывание 5/7 -гибридных АО по связям С—С ведет к формированию ЛМО ст-типа, т. е. симметричных относительно связевой оси. Таким образом, вращения вокруг этой оси ограничены лишь за счет дальних взаимодействий электронов на орбиталях связей С—И. Действительно, энергетические барьеры вращения по ординарным связям малы. В этапе, где барьер определен наиболее точно (11,9 кДж/моль) и соответствует разности энергий стабильной антиперипланарной I и наименее устойчивой синперипланарной П конформации, [c.391]

    Для пентахлортолуола и 1,2,4-триметил-3,5,6-трихлорбензола были получены энергетические барьеры вращения 11,9 и 10,6 ккал моль соответственно [107]. В случае решеток высокосимметричных гексазамещенных бензолов минимумы потенциальной энергии не должны сильно отличаться друг от друга по глубине, а барьеры между ними, очевидно, не очень велики. Это, по-видимому, приводит к тому, что у таких кристаллов наблюдается дисперсия диэлектрической проницаемости, аналогичная дисперсии жидкостей и стекол. Наличие незамещенного положения у пентазамещенных бензолов должно приводить к такому сильному увеличению потенциальных барьеров, что для вращения молекул, представляющего кооперативный процесс, может быть необходимо расслабление решетки с соответствующим увеличением объема, аналогично тому как это происходит в точке плавления. В результате этого резкий вращательный переход сопровождается изменением энергии, объема и обычно кристаллической формы. [c.642]

    Силоксановые каучуки в настоящее время находят все более широкое применение в различных областях народного хозяйства. Это связано главным образом с их высокими термо- и морозостойкими свойствами. Термостойкость полисилоксанов достигает - -300 °С, а температура стеклования —130 °С, Последнее обусловлено большой гибкостью молекулярных цепей полидиметилсилоксана, симметричным расположением групп СНз, низким энергетическим барьером вращения метильных групп около атома кремния (5,4 кДж/моль) [177] и небольшой энергией когезии (7,1—7,5 кДж/моль 8]). Однако большая гибкость цепей, а также простота строения мономерных звеньев этого каучука обеспечивают его высокую способность к кристаллизации уже в процессе охлаждения вблизи температуры —60 °С. Максимальная скорость кристаллизации полидиметилсилоксана (СКТ) наблюдается в температурном интервале от —80 до —90 °С [81, 177], а его равновесная температура плавления при —35 - --40 С. [c.77]

    Энергия активации вращения олефина в комплексах ВЬ(АсАс)(олефин) С1 изменяется в порядке транс-бутея-2 > пропей цис-бутев-2 этилен тетраметилэтилен, и энергетический барьер вращения лежит в пределах [c.325]

    Значения барьеров вращения очень различны. Например, барьер внутреннего вращения этана равен 13 кДж/моль, а для некоторых переходов (например, для атропизомерии) они столь велики, что внутреннее вращение становится невозможным при комнатной температуре, но легко происходит при повышенной температуре. Вообще с повышением температуры растет ко, -центрация или, как говорят, заселенность энергетически более богатых конформаций. В ряде случаев скорость реакции зависит от энергии перехода обычной конформации в г-конформацию (высоты барьера между ними) и вероятности этого перехода. Иными словами, скорость реакции зависит от мгновенной концентрации г-кон-формации в веществе. (В следующее мгновение эта концентрация не изменится, но частично уже другие молекулы окажутся в г-конф рмз гии, а соответствую- [c.17]

    Для этильных радикалов было отчетливо показано, что рекомбинация радикалов происходит по механизму голова к голове [284, 286], а диспропорционирование — по механизму голова к хвосту . Вследствие конфигурации голова к голове при рекомбинации радикалов может возникнуть взаимное отталкивание орбит С—Н связей при сближении радикалов, которое позволит перекрыться орбитам связывающихся электронов. Этот энергетический барьер должен быть того же порядка величины, что и барьер, препятствующий вращению вновь образующейся связи при рекомбинации радикалов, как это было принято для модели, описывающей реакцию рекомбинации. Наблюденная величина энергии активации рекомбинации приписывается целиком этому эффекту. [c.233]

    Мы говорим повернем группы, вращать будем. А надо ли при этом тратить какое-то усилие, затрачивать энергию или нет Поскольку ст-связь между углеродными атомами полностью симметрична относительно линии, связывающей эти атомы (имеет цилиндрическую симметрию), степень перекрывания ст-орбиталей, а следовательно, прочность ст-связи будут одинаковы при вращении атомов относительно этой линии, т.е. все эти расположения, конформации должны быть одинаковы. Так долгое время и считалось, однако оказалось, что, судя по некоторым физическим свойствам, вращеиие вокруг С-С-связи не совсем свободно. Это выяснил американец Питцер в 1936 г. Для этого надо затра чивать энергию, и энергетический барьер этана составляет примернс) 3 ккал/моль. Покажем это на графике зависимости потенциальной энер гии от угла вращения метильной группы вокруг С-С-связи (рис. 2.5). [c.31]

    Потенциальный барьер вращения представляет собой разность потенциальных энергий молекулы в двух ее крайних энергетических состояниях, обладающих максимумом и минимумом потенциальной энергии (т. е, энергия взаимодейсгвия ее атомон)  [c.193]

    Рассмотрим барьеры вращения на примере низкомолекулярных соединений. Структура этапа СНз—СНз показана на рпс. 4.7. Каждая группа СНз может вращаться вокруг простой связи С—С. Энергетически выгодными являются три конформации, одна из которых представлена на рис. 4.7,6. В этих положениях с минимумом потенциальной энергии Упип атомы водорода двух групп СНз наиболее удалены друг от друга. При повороте группы СНз атомы водорода обоих групп сближаются и для преодоления сил отталкивания необходима затрата дополнительной энергии, так называемой энергии активации. Три потенциальных максимума соответствуют трем конформациям молекулы этана при повороте групп СНз на 360°, когда атомы водорода двух групп СНз находятся на наиболее близком расстоянии, т. е. друг против друга (этим конформациям соответствует максимальная потенциальная энергия /тах). Разность между Игаал И [Утш предстзвляет собой высоту потенциального барьера (энергию активации). Для этана в газообразном состоянии она равна 12 кДж/моль. Этан в обычных условиях — газ. Каждая молекула его практически не взаимодействует с другими и указанное значение потенциального барьера изменяется только в кратковременные моменты соударений. Чтобы получить энергию активации, приходящуюся на одну молекулу, нужно разделить значение указанной выше потенциальной энергии на постоянную Авогадро УУа=6,02- 10-23 моль . [c.91]

    Существование пространственной изомерии обуславливается невозмозкностыо вращения фрагментов молек лы вокруг двойной связи (см. раздел, посвященный строению алкенов). Если бы такое вращение имело место, то транс-томер переходил бы в <мс-изомер И наоборот, и эти формулы соответствовали бы одному соединению. Но вращение требует затраты энергии на нарушение перекрывания р-орбиталей, образующих я-связь. Энергетический барьер не позволяет осуществлять такие превращения, поэтому цис и транс-форыи алкенов стабильны и существуют как отдельные соединения. Впрочем, при нагревании энергетический барьер может быть преодолен, и тогда цис-транс-кзомеры переходят друг в друга. [c.205]

    В состоянии / -гибридизации ст-связи атома углерода лежат в одной плоскости под углом 120° друг к другу. Два подобных атома образуют молекулу этилена, где вращение вокруг двойной С=С связи затруднено. Это обусловлено необходимостью преодоления высокого энергетического барьера. Энергия активации для процесса цис-транс-изомеризации непредельных соединений колеблется от 15 до 50 ккал1моль. Процесс связан с перескоком электрона с я-орбитали на соответствующий разрыхляющий уровень. [c.113]


Смотреть страницы где упоминается термин Энергетический барьер вращения Энергия: [c.462]    [c.145]    [c.79]    [c.16]    [c.82]    [c.238]    [c.56]    [c.228]    [c.310]    [c.102]    [c.102]    [c.801]    [c.447]    [c.285]    [c.29]   
Физико-химия коллоидов (1948) -- [ c.118 ]




ПОИСК





Смотрите так же термины и статьи:

Барьер

Барьер энергетический

Энергетические энергия

Энергия вращения



© 2024 chem21.info Реклама на сайте