Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рост цепи при полимеризации катионной, влияние противоиона

    Константы скорости роста цепи при катионной полимеризации, в отличие от радикальных процессов, зависят не только от температуры и природы мономера, но и от типа инициатора и поляр- -ности среды. Действительно, при изменении полярности среды может сильно меняться соотношение между различными формами активных центров, что приводит к изменению влияния противоиона на рост цепи. Следовательно, влияние природы противоиона и полярности среды на процесс полимеризации находятся в тесной связи и их нельзя рассматривать изолированно. [c.177]


    Катионная полимеризация обычно осуществляется при температурах порядка от —50 до —70° С рост макроиона является регулируемым процессом, зависящим от природы ионной пары. Реакция, как правило, проводится в среде с низкой электрической постоянной (например, углеводороды), поэтому анион катализатора не удаляется от растущего макроиона на значительное расстояние. Вследствие постоянной близости этого противоиона, ха-рактер которого зависит от природы катализатора и сокатализатора, он оказывает заметное влияние на реакции обрыва и роста цепи. В этом отношении катионная полимеризация существенно отличается от радикальной, где радикалы, возникшие при распаде [c.162]

    Подробных данных по этому вопросу нет, но можно предположить, что во многих случаях влияние противоиона обусловлено изменениями частотного фактора при реакции роста. Значенпе Лр для полимеризации, катализируемой хлорной кислотой, составляет около 10 —10 , т. е. находится в той же области, что и при радикальной полимеризации (табл. 3.9). Однако Лр уменьшается на много порядков (до 10 ) для полимеризации, катализируемой иодом [28]. Это свидетельствует о том, что противоион 1з расположен очень близко от растущего иона карбония и прочно связан с ним. Способность мономера внедряться в растущую цепь сильно затруднена. О прочности связи 1 с растущим центром с очевидностью свидетельствует также отсутствие влияния внешнего электрического поля (постоянного тока) на полимеризацию [7]. Приложенное электрическое поле увеличивает скорость и степень катионной полимеризации в тех случаях, когда имеется некоторое разделение ионной пары. Под действием электрического поля происходит дальнейшее увеличение расстояния между ионом карбония и его противоионом. Результатом этого является увеличение /Ср, Кр и А . (Такого рода влияние электрического поля не следует путать с использованием электрического поля для инициирования полимеризации путем электролитиче- [c.295]

    Влияние среды на скорость полимеризации на ионных парах можно рассматривать с позиции электростатики, но надо учитывать специфическую нуклеофильную сольватацию катиона за счет комплексообразования. Имеется ряд примеров [34, 41—43] хорошей линейной корреляции логарифма константы скорости роста на ионных парах с параметром (е —1)/(2е-Ь 1) в бинарных смешанных растворителях. Так, при полимеризации стирола с образованием живущих активных центров линейные зависимости в координатах gk — г — )1 2г- - ) наблюдаются для систем бензол—тетрагидрофуран [34, 41], бензол—диметоксиэтан [42], диоксан—тетрагидрофуран [43]. Во всех случаях с увеличением диэлектрической проницаемости происходит увеличение скорости полимеризации, что свидетельствует о полярной природе переходного состояния в стадии роста цепи, но следует принимать во внимание возможность существования, в зависимости от природы среды, двух типов ионных пар — контактной и сольватно-разделенной (см. гл. III, 3), реакционная способность которых может быть различной [44]. Доля тех или иных ионных пар в системе зависит от конкретных свойств системы, в частности от природы противоиона и растворителя. Нужно весьма осторожно относиться к формальному соблюдению корреляционных зависимостей между скоростью полимеризации на ионных парах в бинарных растворителях и е среды или ее основностью, так как бывают случаи, когда изменение скорости реакции (при линейной корреляции) происходит в результате частичного или полного (в соответствии с константой равновесия) перехода контактных ионных пар в сольватно-разделенные. [c.386]


    Катионная полимеризация обычно осуществляется при температурах порядка от —50 до —70° С рост макроиона является регулируемым процессом, зависящим от природы ионной пары. Реакция, как правило, проводится в среде с низкой электрической постоянной (например, углеводороды), поэтому анион катализатора не удаляется от растущего макроиона на значительное расстояние вследствие постоянной близости этого противоиона, характер которого зависит от природы катализатора и сокатализатора, он оказывает заметное влияние на реакции обрыва и роста цепи. В этом отношении катионная полимеризация существенно отличается от радикальной, где радикалы, возникшие при распаде инициатора и находящиеся вдали от места присоединения новых молекул мономера к цепи, влияют только на процесс инициирования, но не на дальнейшее течение полимеризации. В результате низкой температуры катионной полимеризации получаемые полимеры имеют высокий молекулярный вес и макромолекулы их почти не содержат разветвлений. [c.88]

    Природа щелочного металла и растворителя оказывают боль шее влияние на скорость роста цепи. Обычно она возрастает с увеличением радиуса противоиона и с повышением сольватирующей способности растворителя. Однако в связи с уменьшением склонности катионов к сольватации в ряду Ы — Ма+— К" замена растворителя влияет на скорость полимеризации в присутствии противоиона меньше, чем в присутствии противоионов Ыа+ и Это несколько сглаживает различия в активности катализаторов при увеличении сольватирующей способности растворителя. Влияние природы щелочного металла и растворителя на скорость анионной полимеризации бутадиена при различных температурах продемонстрировано экспериментальными данными, приведенными в табл. 27. [c.188]

    При полимеризации на свободных анионах (в растворителях, обладающих высокой сольватирующей способностью по отношению к катионам и высокой диэлектрической проницаемостью) стадию роста цепей можно рассматривать как последовательный ряд одностадийных актов присоединения молекул мономера к активному центру. Некоторая поляризация молекул мономера под влиянием заместителя и наличие электрического заряда на активном центре приводят к присоединению по типу голова к хвосту , однако стереорегулярные полимеры при этом не образуются и природа противоиона не оказывает влияния на процесс. [c.155]

    В анионной полимеризации, так же как и в катионной, активные центры на концах растущих цепей могут находиться в виде ионных пар с различной степенью разделенности зарядов и свободных ионов. Влияние растворителя и противоиона на скорость анионной полимеризации больше по сравнению с катионной и обусловлено, в первую очередь, изменением степени диссоциации ионной пары. О влиянии растворителя можно судить, исходя из значений эффективных констант скорости роста. Для живой анионной полимеризации скорость роста описывается выражением (5.83). Типичный пример приведен в табл. 5.10, из которой следует, что с увеличением полярности растворителя эффективная константа скорости роста макроаниона полистирола возрастает на три порядка. [c.240]

    Влияние условий полимеризации. Констаита сксрос Ги роста цепи при катионной полимеризации определяется не только природой мономера и температурой, но и зависит от типа инициирующей добавки и нолярности среды, т. е. действие всех этих факторов имеет комплексный характер, и нельзя их рассматривать изолированно. С понижением температуры скорость процесса уменьшается, но при этом возрастает диэлектрическая проницаемость среды, в результате чегс уменьшится влияние противоиона на процесс это может привести к повышению константы скорости роста цепи. Ниже показано, как изменяется с температурой при полимеризации изобутилена в среде СНгОг на катализаторе Н2О  [c.129]

    Ионная полимеризация может характеризоваться значительно большей стереоспецифичностью, чем радикальная. Это обусловливается не только взаимодействием заместителей концевых звеньев растущих полимерных цепей, но и участием в элементарных актах роста других компонентов каталитического комплекса, в частности, противоиона. Если активным центром на конце растущей цепи является ионная пара, то противоион оказывается одним из компонентов переходного комплекса, образующегося в реакции роста цепи. Поэтому он может влиять на фиксацию той или иной пространственной конфигурации, концевого звена растущей цепи. В некоторых случаях влияние противоиона, по-видимому, сводится к чисто стерическим эффектам, т. е. можно рассматривать противоион как своеобразный дополнительный заместитель в концевом звене растущей цепи. Например, при катионной полимеризации винилизобутилового эфира на катализаторе ВРз-НаО (противоион ВРзОН-) при —70°С образуется атактический полимер, при полимеризации в тех же условиях на катализаторе ВРз-(С2Н5)20 противоион ВР3ОС2Н5) образуется изотактический полимер. Увеличение объема противоиона значительно усиливает стереоспеци-фический эффект при росте цепи. [c.26]


    Амфотерный характер иона карбония в концепции ЖМКО предполагает способность на стадии роста к взаимодействию по типу мягкая кислота - мягкое основание и жесткая кислота - жесткое основание. Предельные случаи - реакции свободных катионов в газовой форме, где сольватация может осуществляться только субстратом и рост цепи по эфирной связи, например М-ОСЮ3. Для относительно устойчивого иона карбония из изобутилена эффективный рост цепи обеспечивается предпочтительностью реакции с мягким основанием - мономером по сравнению с более жесткими основаниями (противоион и другие). Важно, что условия конкуренции меняются по ходу полимеризации вследствие расхода мономера, изменения состояния катализатора и других процессов. Неблагоприятная вначале реакция карбкатиона, например с противоионом или его фрагментом, может стать выгодной к концу процесса. Видимо, по этой причине происходит дезактивация АЦ, вследствие чего полимеризация изобутилена во многих случаях не доходит до полного исчерпания мономера. Поэтому правильнее не конкретизировать состояние ионной пары, а говорить о неопределенности этого понятия, подразумевая неоднозначную роль противоиона во время роста полимерной цепи. Следовательно, термины свободный ион карбония и, соответственно свободный противоион , применяемые в отношении роста цепи при вещественном инициировании катионной полимеризации, весьма условны. Известная низкая способность к сольватации объемных противоионов в катионной полимеризации объясняет непринципиальное влияние полярности растворителя на стадии роста цепи. Аналогично комплексование противоиона с электроноакцепторными соединениями или введение солевых добавок с одноименным (катализатору) анионом, судя по сравнительно небольшому увеличению значений молекулярной массы полиизобутилена [217], мало изменяет поведение ионной пары. Полезную информацию о роли противоионов на стадии роста дают квантово-химические расчеты взаимодействия карбкатиона с мономером [218]. Учитывая конкурентный характер реакции мономера и противоиона с АЦ, переходное состояние стадии роста можно представить по типу реакций нуклеофильного замещения 8 ,2  [c.87]

    Характер отрицательного противоиона также может оказывать влияние на катионную полимеризацию. Чем больше и чем слабее связан противоион, тем легче происходит рост цепи. Влияние противоиона, так же как и влияние растворителя, может быть очень широким. Так, эффективная константа роста цепи для полимеризации стирола при 25 °С в растворе в 1,2-дихлорэтане возрастает от 0,003 при катализе иодом до 0,42 и 17,0 нри катализе 8нС14-Н20 и НСЮ4 соответственно [26, 27]. [c.295]

    Рост цепи обычно считают простейшим элементарным процессом. Следует отметить влияние противоиона. Если существующие общие представления о катионной полимеризации правильны, то надо полагать, что противоион не может полностью выйти за пределы радиуса электростатического действия растущего карбониевого иона и ионная пара выступает в качестве единой кинетической единицы. Тогда, конечно, во всех элементарных процессах участвует и противоион. Это особенно характерно для сред с низкой диэлектрической проницаемостью, в которых противоион тесно связан с растущим центром. Акт роста можно представить себе как результат согласованного донорно-акценторного действия ионной пары [c.223]

    Амфотерный характер иона карбония в концепции ЖМКО предполагает способность на стадии роста к взаимодействию по типу мягкая кислота-мягкое основание и жесткая кисло та-жесткое основание. Предельные случаи-реакции свободных катионов в газовой фазе, где сольватация может осуществляться только субстратом и рост цепи по эфирной связи, например М-ОСЮ3. Для относительно устойчивого иона карбония из изобутилена эффективный рост цепи обеспечивается предпочтительностью реакции с мягким основанием-мономером по сравнению с более жесткими основаниями (противоион и другие). Важно, что условия конкуренции меняются по ходу полимеризации вследствие расхода мономера, изменения состояния катализатора и других процессов. Неблагоприятная вначале реакция карбкатиона, например с противоионом или его фрагментом, может стать выгодной к концу процесса. Видимо по этой причине происходит и дезактивация АЦ, вследствие чего, полимеризация изобутилена во многих случаях не доходит до полного исчерпания мономера. Поэтому правильнее не конкретизировать состояние ионной пары, а говорить о неопределенности этого понятия, подразумевая неоднозначную роль противоиона во время роста полимерной цепи. Следовательно, термины свободный ион карбония и, соответственно, свободный противоион , применяемые в отношении роста цепи при вещественном инициировании катионной полимеризации, весьма условны. Известная низкая способность к сольватации объемных противоионов в катионной полимеризации объясняет не принципиальное влияние полярности растворителя на стадии [c.62]

    Сольватация влияет как на обрыв, так и на рост цепи. В гл. VII было показано, что анионный рост цепи с участием катиона щелочного металла значительно ускоряется, если катион координирует с молекулами растворителя или другого подходящего вещества (см. гл. VII, разд. 5 и 8). Следовательно, нужны специальные опыты, для того чтобы установить влияние именно сольватации противоиона на скорость обрыва. Основываясь только на данных о суммарной кинетике полимеризации, можно сделать неправильные выводы. Пеппер [И] описал интересные системы, позволяющие непосредственно изучать реакции обрыва. Полимеризацию стирола инициировали серной или хлорной 1 ислотой. Было показано, что инициирование происходит практи- [c.626]

    Анализ этих данных выдвигает на первый план специфику акта образования комплексов мономера с активным центром [направление (а) реакции (146)], обязательного в системах Циглера—Натта, где координационная сфера переходного металла обычно не заполнена. При анионной и катионной полимеризации этот акт может совершенно отсутствовать, если соответствую-ш,ие противоионы координационно насыщены и связаны с лигандами, которые не могут быть вытеснены мономером. По-видимому именно в этом состоит причина особенно высокой стереоспецифичности катализаторов Циглера—Натта, так как роль конфигурации комплекса (6, 1П) как фактора, опреде.тяющего конечную структуру макромолекулы, весьма правдоподобна. В связи с этим большой интерес представляют эффекты, которые проявляются в соответствующих процессах полимеризации в присутствии электронодонорных агентов. Влияние агентов подобного рода на формирование структуры цепи в обычных ионных процессах рассмотрено в предыдущем параграфе. В системах Циглера-Натта основания Льюиса часто приводят к повышению стерео-специфичности катализатора, чему сопутствует уменьшение его общей активности. Как отсюда следует, электронодонор проявляет избирательность в актах комплексообразования и взаимодействует преимущественно с центрами реакции роста, отличающимися меньшей стереоспецифичностью, которая, очевидно, совпадает с их относительно более высокими электроноакцепторными свойствами или с большей пространственной доступностью. Конечный эффект указывает на большую роль непосредственного окружения активных центров при образовании комплексов (6, IV) определенной структуры. Известны системы, в которых присутствие полярных агентов вызывает инверсию стереорегулярности образующегося полимера. Один из многих примеров — полимеризация бутадиена под действием катализатора на основе хлористого кобальта и диэтилалюминийхлорида. Эта гомогенная си- [c.257]


Смотреть страницы где упоминается термин Рост цепи при полимеризации катионной, влияние противоиона: [c.56]    [c.378]    [c.440]   
Основы химии полимеров (1974) -- [ c.292 , c.295 , c.296 ]




ПОИСК





Смотрите так же термины и статьи:

Катионная полимеризация

Полимеризация влияние

Противоионы

Рост цепи

Рост цепи катионный

Цепи катионные



© 2025 chem21.info Реклама на сайте