Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Орбитальной симметрии правило

    Начиная с 50-х годов, получило развитие новое направление в разработке методов оценки реакционной способности молекул на основе представлений квантовой теории химической связи. Особенностью этого направления являются определение реакционных центров в молекулах исходя из молекулярной структуры и разработка методов оценки относительной реакционной способности молекул. Так, в методе Хюккеля реакционная способность молекул качественно характеризуется индексами реакционной способности плотностью электронного заряда, индексом свободной валентности, энергией делокализации и др. (см. 37). В методе МО ЛКАО была показана особая роль граничных молекулярных орбиталей. В 60-х годах Вудвордом и Хоффманом было сформулировано правило сохранения орбитальной симметрии в синхронно протекающих элементарных химических актах. Все эти положения получили логическое завершение в методе возмущенных молекулярных орбиталей (метод ВМО). [c.583]


    Общие для электроциклических реакций (11-2) правила сохранения орбитальной симметрии сформулированы в табл. 58. [c.323]

    Согласно Пирсону, правила сохранения орбитальной симметрии для бимолекулярных реакций можно сформулировать в следующем виде. [c.143]

    Общие хля электроциклических реакций ( 3.2) правила сохранения орбитальной симметрии сформулированы в табл. 13.2. [c.503]

    Рассмотрим. применение правила сохранения орбитальной симметрии к простейшей реакции водорода с иодом  [c.144]

    Приведенный метод анализа элементарного акта оказывается применимым для большого числа различных превращений и впервые сформулирован в виде правил орбитальной симметрии Вудвордом и Гофманом. Основным среди этих правил, изложение которых можно найти в специальных монографиях, является следующее чтобы элементарная реакция проходила с не слишком высоким барьером, она должна быть разрешена по симметрии, т. е. симметрия орбиталей разрываемых связей должна соответствовать симметрии орбиталей образующихся связей. [c.285]

    Одним из примеров такого качественного подхода являются правила сохранения орбитальной симметрии (правила Вудворда — Хоффмана), широко применяющиеся сейчас при сравнительном обсуждении механизмов органических реакций [259], По-видимому, один из простейших примеров, иллюстрирующих применение этих правил, состоит в рассмотрении реакций изотопного обмена водорода через квадратный промежуточный комплекс (рис. 2.7). При таком механизме реакции МО реагирующей системы должны обладать определенной симметрией, сохраняющейся во время элементарного акта, т. е. должны быть либо симметричными (5), либо антисимметричными (Л) при отражении в плоскостях симметрии реакции. Из требования сохранения симметрии можно установить корреляцию одноэлектронных [c.125]

    Весьма перспективный метод исследования механизмов элемен<-тарных химических реакций был предложен Вудвордом и Гоффманом (правила Вудворда — Гоффмана) на основе закона сохранения орбитальной симметрии [108. Сходные идеи высказывали также и другие авторы. Суть метода состоит в рассмотрении возможных энергетических состояний исходных и конечных продуктов реакции на основе теоретико-групповых и квантовомеханических представлений. Такое рассмотрение позволяет отделить те особенности механизма реакции, которые имеют геометрическое или кинематическое происхождение, от чисто динамических особенностей, зависящих от природы взаимодействия между частицами, т. е. от потенциальной энергии. Определение последних особенностей требует решения уравнения Шредингера определение первых возможно на основе предварительного сравнительно простого анализа. [c.65]


    Как уже говорилось, реакции Дильса — Альдера протекают быстро, и для их осуществления разработаны удобные методики. Резко отличается от этого внешне схожая димеризация олефинов, приводящая к циклобутанам (реакция 15-48) эта реакция, за исключением случаев фотохимического инициирования, дает очень плохие результаты. Фукуи, Вудвард и Гоффман показали, что такие резко контрастирующие результаты можно объяснить с помощью принципа сохранения орбитальной симметрии [673], согласно которому одни реакции оказываются разрешенными, а другие — запрещенными. Правила орбитальной симметрии (называемые также правилами Вудварда— Гоффмана) применимы только к согласованным реакциям, например к механизму а, и основываются на принципе, согласно которому реакции идут таким образом, чтобы в течение всего процесса поддерживалось максимальное связывание. Известен ряд способов применения принципа сохранения орбитальной симметрии к реакциям циклоприсоединения, три из которых используются чаще всего [674]. Мы рассмотрим здесь лишь два — метод граничных орбиталей и метод Мёбиуса — Хюккеля. Третий метод, называемый методом корреляционных диаграмм [675], менее удобен для применения, чем указанные два других. [c.244]

    Реакция Дильса-Альдера в отсутствие катализаторов протекает как бимолекулярная реакция с согласованной перестройкой 71-орбиталей. В переходном состоянии взаимодействуют тс-орбитали диена с л-орбиталью олефина, чему способствует геометрия реагентов (возникает щестичленный цикл) и характер (свойства симметрии) взаимодействующих орбиталей. Согласно правилам орбитальной симметрии (правило Вудворда-Гофмана), эффективное перекрывание взаимодействующих орбиталей происходит только тогда, когда связывающая орбиталь одного реагента и разрыхляющая орбиталь другого имеют подходящую симметрию. Как видно из схемы, приведенной на рис. 11.1, в реакции диенового синтеза это условие выполняется, поэтому реакция протекает сравнительно быстро. В случае взаимодействия двух олефинов такого соответствия нет, реакция запрещена правилами орбитальной симметрии и для ее осуществления необходимо перевести один из реагентов в возбужденное состояние. Общий анализ условий согласованного присоединения полиенов дает следующее правило. Согласованное присоединение разрешено, если общее число л-электронов равно 4я 2. В случае присоединения олефина к диену это число равно 6. [c.335]

    Следует отметить, что поляризация ядер обнаруживается не во всех реакциях перегруппировок. Систематический анализ ХПЯ привел авторов [239] к заключению, что успешное детектирование ХПЯ в реакциях перегруппировок ограничивается лишь такими случаями, в которых молекулярный механизм запрещен формально правилами сохранения орбитальной симметрии (правила Вудворда— Гоффмана). Однако на основании только качественных наблюдений ХПЯ еще нельзя сделать однозначный вывод о том, является ли ядерная поляризация доказательством радикального пути как основного механизма превращения или радикальный путь лишь побочный. Такое заключение можно сделать лишь на основании количественных исследований ХПЯ. [c.229]

    Принцип сохранения орбитальной симметрии за последнее время стал широко использоваться для объяснения известных явлений в кинетике и катализе и для предсказания новых. Следует, однако, помнить, что, исходя из правила сохранения,орбитальной симметрии, мы можем лишь предсказать, будет ли благоприятствовать определенный механизм образования активированного комплекса данной реакции, но само правило еще не дает возможности определить величину потенциального барьера, для этого нужны квантовомеханические расчеты очень высокой точности или непосредственные измерения скорости процесса при разных температурах. [c.147]

    Правила орбитальной симметрии помогают также объяснить необычную устойчивость некоторых соединений (см. также т. 3, реакция 15-48 и реакция 18-31). Так, соединение 105 могло бы в результате термической [1,3]-сигматропной перегруппировки легко превращаться в толуол, который, конечно, намного устойчивее, чем 105, благодаря наличию ароматического [c.194]

    Все это и побудило нас к написанию данного учебного пособия Теория строения молекул , в котором авторы опирались на собственный опыт преподавания в Ростовском университете. Стремясь сделать пособие достаточно полным и независимым от других учебников (что удобно для изучающего), мы изложили в гл, I—4 общие вопросы теории строения атомов и молекул. Гл. 5 и 6, хотя и основаны во многом на новом материале, также традиционны для учебников по структуре молекул и химической связи. Остальная же часть книги не имеет аналогий, в ней дается подробный анализ современных расчетных методов квантовой химии и их приложений к проблемам структуры молекул и механизмов химических реакций. Особое внимание уделено концептуальной стороне современной теории строения и реакционной способности, развитию новых представлений и правил (сохранение орбитальной симметрии, концепция ароматичности, правило полярности и др.). [c.3]


    Роальд Хоффман (род. 1937 г.) — американский химик, известный своими работами по квантовой химии. Совместно с Р. Вудвордом сформулировал правила сохранения орбитальной симметрии. [c.296]

    Были предложены механизмы этих реакций, учитывающие правило орбитальной симметрии (правило Вудворда - Гоффмана). Скелетную изомеризацию линейных насыщенных углеводородов и циклов Сз-С в промышленности проводят при повышенных температурах и, как правило, на гетерогенных катализаторах (например, РУу-АйзОд)  [c.581]

    Стрейтвизер А. Теория молекулярных орбит для химиков-органиков. Пер. с англ.— М. Мир, 1965. По своему уровню эта киига находится между уже указанными книгами Дьюара и Либэрлса. Разработаны методы, используемые в теории молекулярных орбиталей Хюккеля, рассмотрено нх применение к органическим системам. Включены также ясные и обширные комментарии к применению этой теории при исследовании органических реакций и корреляций в органической химии. К сожалению, эта книга вышла до развития представлений об орбитальной симметрии (правил Вудворда — Хофмана). [c.569]

    Недавно Таль1юзе с сотр. [22] обнаружил существование корреляции между упоминавшимися выше исключениями из правила отсутствия энергии активации ионно-молекулярных реакций и имеющим, место в этом случае запретом по орбитальной симметрии. Анализ экспериментальных данных [c.193]

    Таким образом, изложенное следствие из теории групп требует, чтобы орбитальная симметрия исходного вещества сохранялась и в активированном комплексе, и поэтому может быть названо правилом сохранения орбитальной симметрии при химической реакции. В 1965 г, Р. Вудворт и Р. Хоффман сформулировали правила для так называемых синхронных реакций в органической химии, основанные на принципе сохранения орбитальной симметрии на всем пути реакции. Этот принцип устанавливает корреляцию (соответствие) орбитальной симметрии исходных реагентов и продуктов реакции. Правила Вудворта — Хоффмана стали важнейшим обобщением( органической химии [к-34]. Строгий подход к правилам сохранения орбитальной симметрии может быть дан на основе теории групп и теории возмущений, в которой химическая [c.142]

    Следует, указать на два обстоятельства, позволяющие применять для ориентировки правило сохранения орбитальной симметрии. Во-первых, точные волновые функции неизвестны, и приходится использовать вместо них приближенные функции МО ЛКАО. Однако последние правильно отражают наиболее важное здесь свойство точных волновых функций — их симметрию. Во-вторых, для ориентировочных оценок можно в волновой функции (217.1) вместо бесконечной суммы возбужденных состояний ограничиться лишь первым из них, вклад которого наиболее существен. Таким образом, при качественных оценках можно исходить из волновых функций основного и первого возбужденного состояний реагирующей системы. Чтобы энергетический барьер реакции был невысок, первое возбужденное состояние системы должно иметь ту же симметрию, что и основное, н не очень сильно, отличаться от него по энергии. Возбуждение молекулы из основного в первое возбуаденное состояние представляет собой переход электрона с высшей занятой молекулярной орбитали (ВЗМО) на низшую свободную молекулярную орбиталь (НСМО). Поэтому симметрия и разность энергий именно этих двух орбиталей, НСМО и ВЗМО, играют первостепенную роль при качественных оценках возможности протекания реакции через то или иное переходное состояние. ВЗМО и НСМО должны в благоприятном случае иметь одинаковую си (метрию и мало отличаться по энергии. На это впервые указал в 1952 г. Фукуи [43]. [c.143]

    В заключение отметим, что рассмотренные вопросы составляют теоретический фундамент неорганической химии, на котором базируется изучение других ее разделов — химии элементов и их соединений, неорганического синтеза и методов исследования неорганических веществ. Между всеми разделами современной неорганической химии имеются глубокие внутренние связи, описываемые комплексом общих методов исследования структурного, термодинамического и кинетического. Применение только одного из них не дает полной картины процесса. Например, скорости реакции определяются не только кинетическими особенностями процесса, но и структурным соответствием между характеристиками, орбитальной симметрией реагентов и продуктов реакции (правило Р. Вудворта и Р. Гоффмана, 1965). Если соответствие имеется, реакции протекают легко, если соответствия нет —реакции протекают крайне медленно. [c.291]

    По этому методу правила орбитальной симметрии связываются с правилом Хюккеля относительно ароматичности, которое обсуждалось в гл. 2. Правило Хюккеля, согласно которому циклическая электронная система, содержащая Ап- -2 электронов, является ароматической (а следовательно, стабильной), применимо, конечно, к молекулам в основных состояниях. При использовании принципа орбитальной симметрии мы имеем дело не с основным, а с переходным состоянием. В этом методе рассматриваются не сами молекулярные орбитали, а скорее р-орбитали до их перекрывания, приводящего к образованию молекулярных орбиталей. Такой набор р-орбиталей называется базисным набором (рис. 15.2). При рассмотрении возможности согласованной реакции орбитали базисного набора необходимо расположить в соответствии с положением, которое они займут в переходном состоянии. На рис. 15.3 это изображено для [2 + +2]- и [4-Ь2]-циклоирисоединения, Затем следует обратить внимание на обращение знака. Из рис. 15.3 очевидно, что ни в одном из случаев обращения знака не происходит. Пунктирная линия на этом рисунке соединяет только отрицательные доли орбиталей. Системы без обращения знака или с четным числом таких обращений называются системами Хюккеля. Системы с нечетным числом инверсий знака называются системами Мёбиуса (по аналогии с лентой Мёбиуса, которая представляет собой математическую поверхность, изображенную на рис. 15.4). Мёбиусовские системы не вступают ни в одну из этих реакций, а примеры таких систем приведены в т. 4 (см. описание реакций 18-31 и 18-36). [c.247]

    Еще раз следует подчеркнуть, что эти правила применимы только к реакциям циклоприсоединения, протекающим по механизму с циклическим переходным состоянием, т. е. к тем реакциям, в которых образование (или разрыв) двух а-связей происходит примерно одновременно [678]. Это правило не относится к тем случаям, когда один акт образования (или разрыва) связи заверщается до начала другого. Кроме того, подчеркнем, что факт разрещенности термической реакции Дильса — Альдера (механизм а) по принципу сохранения орбитальной симметрии не является доказательством того, что любая реакция Дильса — Альдера идет по этому механизму. Принцип указывает только, что такой путь реакции разрещен, но совсем не означает, что реакция обязательно следует по этому пути. Однако из этого принципа следует, что термическое [2 + + 2]-циклоприсоединение, при котором молекулы реагентов располагаются друг против друга [679], не может протекать через образование циклического переходного состояния, поскольку энергия активации таких процессов слищком высока (см., однако, ниже). Далее мы увидим (реакция 15-48), что такие реакции протекают в основном по двустадийным механизмам. Аналогично фотохимическое [4-[-2]-циклоприсоединение известно, но тот факт, что оно нестереоспецифично, также указывает на осуществление двустадийного механизма с образованием бирадикала [680] (механизм б [681]). [c.249]

    Обе реакции идут по согласованному механизму в соответствии с правилами орбитальной симметрии (т. 3, описание реакции 15-47) первая реакция [308] представляет собой супрапо-верхностный, а вторая [309] — антараповерхностный процесс. Эти правила предсказывают также, что элиминирование 802 из эписульфонов не может происходить по согласованному механизму (поскольку антараповерхностный процесс невероятен для такого цикла) имеются экспериментальные данные, показывающие, что реакция действительно идет несогласованным путем [310]. Элиминирование ЗОг из соединений 46 и 47 служит примером хелетропных реакций [311]. Их определяют как реакции, в которых две ст-связи, идущие к одному атому (в данном случае к атому серы), образуются и разрываются согласованно [312]. [c.68]

    Циклогексадиены являются, естественно, 1,3-диенами, и в некоторых случаях их можно превратить в циклобутены, а не в 1,3,5-триены [373]. Интересным примером являются пирокальциферолы. Фотолиз син-изомера 92 (или другого син-изомера, не показан на схеме) приводит к соответствующему циклобутену [374], а фотолиз ант -изомеров (один из которых 93) — к 1,3,5-триену 94. Это различие на первый взгляд необычно, но легкообъяснимо на основе правил орбитальной симметрии. Фотохимическое раскрытие цикла в 1,3,5-триене должно быть конротаторным. Если 92 реагирует по такому [c.184]

    Хотя правила орбитальной симметрии предсказывают почти во всех случаях стереохимические результаты, необходимо помнить (т. 3, реакция 15-47), что они говорят только о том, разрешена или запрещена реакция. Возможность протекания реакции вовсе не означает, что реакция действительно идет, а если она протекает, то не обязательно по согласованному механизму, поскольку существуют другие реакционные пути с меньшей энергией [382]. Более того, запрещенную реакцию можно провести, если найти способ достижения ее высокой энергии активации. Действительно, например, с помощью ИК-лазерного облучения была осуществлена обратимая конверсия циклобутен — бутадиен, а именно г с-3,4-дихлоробутен был превращен в запрещенные цис,цис-и гране,транс-1,4-дихлоро-1,3-циклобутадиены, как и в разрешенный цис,транс-изомер [383]. Это термическая реакция. Лазерный свет возбуждает молекулу на высший колебательный уровень (т. 1, разд. 7.1), не затрагивая ее электронного состояния. [c.187]

    Роальд Хоффман (род. 1937 г.) — американский химик, внесший крушшй вклад в теоретическую органическую химию, химию металлоорганических и координационных соединений. Совместно с Р. Вудвордом сформулировал правила сохранения орбитальной симметрии в химических реакциях. Лауреат Нобелевской премии по химии 1981 г. Иностранный член Российской АН. [c.232]

    Нетрудно убедиться в том, что обобщенное правило включает в себя как частный случай правила, представленные для реакций циклоприсоединеиия (см. табл. 13.1) и электроциклических реакций. Так, например, для конротаторного замыкания бутадиена Уа (п1 + п1) имеется одна (4<7 +2) -компонента реакции (< ==0). Реакция должна быть разрешена правилами сохранения орбитальной симметрии. Для дисротаторного замыкания Уб (тг + л ) число отмеченных компонент равно двум. Реакция запрещена по симметрии. [c.506]


Смотреть страницы где упоминается термин Орбитальной симметрии правило: [c.56]    [c.585]    [c.295]    [c.585]    [c.341]    [c.145]    [c.184]    [c.185]    [c.186]    [c.188]    [c.188]    [c.241]    [c.4]   
Электронное строение и свойства координационных соединений Издание 2 (1976) -- [ c.318 , c.327 ]




ПОИСК





Смотрите так же термины и статьи:

Правила орбитальной симметрии в механизмах химических реакций

Правила сохранения орбитальной симметрии

Сохранение орбитальной симметрии. Правила Вудворда — Хоффмана



© 2025 chem21.info Реклама на сайте