Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пигменты, анализ

    Основоположником хроматографического анализа является русский ботаник Михаил Семенович Цвет, изучавший состав хлорофилла. Он настойчиво искал эффективный метод разделения сложных смесей органических соединений, которые извлекал неводными растворителями из свежих и сухих листьев растений. Анализируя причины неполной экстракции, М. С. Цвет высказал предположение, что полному извлечению пигментов препятствует их адсорбция тканью листа. Опыты с различными порошкообразными сорбентами подтвердили это—при пропускании растворов сложных смесей через заполненную мелом колонку они разделялись на отдельные окрашенные зоны. [c.5]


    Хроматографический анализ. При химическом исследовании хлорофилла большие трудности встречаются при разделении и очистке близких по свойствам растительных пигментов. Они не перегоняются и не разделяются перекристаллизацией. Кроме того, они весьма легко изменяются при химической обработке. Поэтому очень большое значение приобрел особый метод разделения этих пигментов, изобретенный в 1906 г. русским ботаником М. С. Цветом (1872—1919) и названный им хроматографическим адсорбционным анализом. [c.590]

    Эти закономерности адсорбции веществ из многокомпонентных растворов легли в основу хроматографии — метода разделения и анализа многокомпонентных смесей. Впервые этот метод был применен М. С. Цветом (1903 г.) для разделения на составные компоненты сложного растительного пигмента— хлорофилла. Пропуская раствор хлорофилла через слой оксида алюминия, помещенного в стеклянную трубку (колонку), М. С. Цвет обнаружил, что отдельные компоненты этого сложного вещества адсорбируются на разных уровнях по высоте колонки. В верхней части накапливается компонент, обладающий наибольшей адсорбционной способностью (рис. 68 а, компонент С), последующие зоны соответствуют компонентам со все более уменьшающейся адсорбционной способностью. Так как отдельные компоненты хлорофилла окрашены, то эти зоны легко различить по окраске. Такой окрашенный столбик адсорбента М. С. Цвет назвал хроматограммой, а сам метод анализа — хроматографическим, [c.176]

    Методы хроматографии преимущественно применяют при анализе смесей и определении (а также выделении) примесей. Общий метод разделения газовых смесей, открытый русским ботаником М. С. Цветом (1903 г.), получил в настоящее время очень широкое применение и называется хроматографией. М. С. Цвет, изучая окраску различных растительных вытяжек красящим веществом хлорофиллом (сложный растительный пигмент), впервые применил для разделения окрашивающих пигментов растений своеобразный метод, который назвал хроматографией (греческое хромое — цвет, графо — пишу). В этом методе смесь (жидкий раствор, смесь газов) движется под влиянием какого-либо воздействия по адсорбенту. Так как различные [c.195]

    Хроматографический метод разделения и анализа сложных смесей был разработан в 1903—1906 гг. русским ботаником М. С. Цветом, впервые использовавшим его для разделения растительных пигментов. Характеризуя принцип своего метода, Цвет писал При фильтрации смешанного раствора через столб адсорбента пигменты... располагаются в виде отдельных, различно окрашенных зон. Подобно световым лучам Б спектре, различные компоненты сложного пигмента закономерно распределяются друг за другом в столбе адсорбента и становятся доступными качественному определению. Такой расцвеченный препарат я назвал хроматограммой, а соответствующий метод анализа— хроматографическим методом .  [c.59]


    Хроматографический анализ прост и настолько чувствителен, что с его помощью разделяют вещества, весьма близкие по природе редкоземельные элементы, радиоактивные изотопы, различные пигменты, белки и т. д. [c.294]

    Результаты анализов на соответствие черной эмали НЦ-25 на основе пигментов нз технического углерода требованиям ГОСТ— 54-06. [c.118]

    М. С. Цвет впервые применил открытый им адсорбционный метод для разделения различно окрашенных растительных пигментов. При этом использовался столбик окиси алюминия, в котором компоненты сложного пигмента распределялись друг за другом, подобно различным лучам в спектре. Такой столбик адсорбента Цвет назвал хроматограммой. Это название применяется и в настоящее время, даже если адсорбированные вещества бесцветны. В последнем случае границы между зонами определяют другими методами. Для этого иногда применяют проявление подходящим химическим реактивом. Так, например, при анализе неорганических соединений часто проявляют растворами сернистого натрия, железистосинеродистого калия и т. д. Используют также другие методы, как например метод радиоактивных изотопов. [c.68]

    Несмотря на простоту способ не нашел широкого применения в анализе, так как не дает полного разделения. Однако он становится весьма эффективным для препаративного выделения чистого вещества из технического продукта при условии, конечно, когда это вещество удерживается в колонке слабее всех других компонентов продукта. Типичные примеры фронтального способа очистка воды пермутитами и другими ионообменными адсорбентами очистка воздуха активированными углями от отравляющих веществ в противогазах и вентиляционных фильтрах химических предприятий. Сточки зрения химика-аналитика метод пригоден для предварительного качественного анализа неизвестной смеси и особенно для определения числа входящих в ее состав компонентов, что, например, делал Цвет при предварительном исследовании состава хлорофилловых пигментов. [c.16]

    Ионообменная хроматография — один из видов хроматографического анализа, основы которого были созданы в 1903— 1906 гг. Цветом первоначально с целью разделения пигментов группы хлорофилла. Современная хроматография — это метод разделения веществ (молекул или ионов), основанный на различиях в скорости переноса растворенных веществ в системе двух фаз, одна из которых подвижна компоненты перемещаются через систему только находясь в подвижной фазе, в направлении ее движения. Компоненты, распределяющиеся предпочтительно в неподвижной фазе, двигаются медленнее компонентов, находящихся в основном в подвижной фазе. Таким образом, различия в равновесном распределении компонентов между двумя фазами и в кинетике обмена обуславливают различия в линейных скоростях движения компонентов и в конечном счете ведут к их разделению. [c.686]

    Для анализа берут навеску растительного материала из сухих листьев (1 г) или из свежих зеленых листьев (5 г). Если для опыта взят сухой материал, то его измельчают и помещают в колбу емкостью 50 мл. Если же для анализа берут растительный материал из свежих зеленых листьев, то навеску помещают в фарфоровую ступку и тщательно растирают. Для лучшего растирания прибавляют стекло или кварцевый песок. К растертым листьям прибавляют 15 мл смеси бензина и бензола в соотношении 9 1 и 10 жтг ацетона, снова растирают и перемешивают содержимое. Смесь переносят в стеклянный фильтр № 2. Ступку (или колбу) споласкивают чистым ацетоном и промывную жидкость также переносят на фильтр. Экстракт пигментов отфильтровывают. Остаток на фильтре промывают несколькими порциями (по 5 мл) ацетона до тех пор, пока вытекающий фильтрат станет прозрачным, т. е. не будет содержать пигментов. [c.29]

    В этой главе мы рассмотрим подробнее дисперсионный анализ грубодисперсных систем, в частности, порошков, суспензий и эмульсий. Нахождение дисперсности этих объектов имеет особенно большое значение, поскольку она определяет производственные показатели многих промышленных материалов. Так, качество бетона во многом зависит от дисперсности цемента и песка, качество фарфора —от дисперсности каолина, интенсивность и тон краски — от размеров частиц пигмента и т. д. В реальных грубодисперсных системах спектр размеров частиц обычно столь широк, что определение среднего размера практически не имеет смысла. Поэтому для характеристики дисперсности. мы разделяем систему мысленно на ряд отдельных фракций, понимая под фракцией [c.45]

    Уравнение (111.14) лежит в основе с е д и м е н т а ц и о н н о г о анализа размеров грубодисперсных частиц. Этот метод, будучи одним из видов дисперсионного анализа, имеет огромное практическое значение, поскольку дисперсность определяет производственные показатели многих промышленных (цемент, бетон, каолин, пигменты и др) и природных (песок, грунты, почвы, бактерии) материалов. [c.35]


    М. С. Цвет в работе, опубликованной в 1903 г., описал на примере разделения природных пигментов метод адсорбционного хроматографического анализа, основы которого он заложил еще в своей магистерской диссертации в 1901 г. Им же введен и термин хроматография . [c.46]

    Различия в растворимости сульфидов лежат в основе их определения в качественном анализе. Нерастворимые в воде сульфиды имеют разнообразную яркую окраску ( dS — желтый, ЗЬгЗз — оранжевый, PbS — черный и т. д.), что объясняет их широкое использование в качестве пигментов при производстве красок. Сплавы, полученные в результате прокаливания сульфидов щелочно-земельных металлов с добавками флюса (плавиковый шпат, бура) и следами солей тяжелых металлов, применяют для изготовления светящихся красок. В кожевенной промышленности сульфиды натрия, кальция, бария нужны для обезволашивания шкур, а в медицине ванны с раствором сульфида калия применяют для лечения кожных заболеваний. [c.243]

    Свойства пигментов.—При оценке лазурей, так же как и при оценке многих других красок, химический анализ проливает мало света на свойства и ценность исследуемого материала. Оценка почти целиком основана еа результатах некоторых физических испытаний эмпирического характера, которые выработаны в зависимости от той цели, для которой материал предназначен. Так как номенклатура такой исследовательской работы может быть неизвестной химику-аналитику, полезно дать несколько определений. [c.57]

    Наиболее универсальным методом современной химии, применяемым как в лабораторных, так и в промышленных анализах, является хроматография. Можно смело сказать, что современная химическая наука и технология переживает хроматографическую эру . Честь открытия этого универсального метода принадлежит русскому ботанику М. С. Цвету, который в 1903 г. обнаружил, что при пропускании через колонку, заполненную адсорбентом раствора смеси окрашенных веществ — пигментов зеленого листа — это смесь разделяется на отдельные зоны по длине колонки, причем в каждой зоне находится либо индивидуальное соединение, либо смесь двух-трех практически не различающихся по свойствам веществ. [c.119]

    Анализ ИК-спектров твердых пленок хлорофилла и его металлсодержащих аналогов привел авторов работы [350] к выводу о том, что наблюдаемая широкая полоса поглощения 3400 см расположенная в области характеристических частот колебаний ОН-связей, возмущенных водородной связью, относится к молекуле воды, связанной одновременно с двумя атомами азота пиррольных ядер пигмента. [c.139]

    Короткодневный сорт сои Билокси так чувствителен к свету, что индуктивный эффект длительных темновых периодов можн снять даже минутным облучением с помощью ламп накаливания (без фильтра) в середине ночи. По этой причине X. Борт-вик и С. Хендрикс с сотрудниками пришли к выводу, что это растение было бы идеальным объектом для выяснения вопроса о том, какие длины волн наиболее эффективно предотвращают инициацию цветения а эти сведения в свою очередь могли бы помочь в идентификации фоторецепторного пигмента, участвующего в контроле цветения. Поэтому они определили спектр действия для данного процесса, используя большой спектрограф для одновременного облучения групп растений светом с разной длиной волны (рис. 11.3). Полученные спектры действия для ингибирования цветения короткодневных растений сои и дурнишника и для активации цветения длиннодневных растений Ногйеит (ячмень) и Нуозсуатиз (белена) оказались поразительно сходными (рис. 11.4). Во всех случаях был обнаружен максимум активности в красной области спектра (около 660 нм) при почти полной неэффективности других областей. Сходство спектров позволяло считать вероятным, что зацветание растений как короткого, так и длинного дня контролируется одним и тем же пигментом. Анализ спектра действия привел к предположению, что поглощающий пигмент сходен с пигментом [c.334]

    Адсорбционную колонну для разделения нефтяных углеводородов впервые применил Дэй [5]. Он пропускал нефть снизу вверх через колонну с фуллеровой землей и показал, что непредельные и ароматические углеводороды оставались преимущественно в нижней части этой колонны. Методика Дэя была улучшена Джилпином и Крэмом [13], которые пропускали нефть через колонну длиной 1,52 м, заполненную фуллеровой землей. В 1906 г. М. С. Цвет предложил называть метод, в котором для разделения веществ используется адсорбционная колонна, хроматографическим анализом, так как первоначально этот метод использовался для разделения окрашенных пигментов. В более поздних работах термин хроматографический анализ или хроматография стал применяться для обозначения методов адсорбционного разделения как бесцветных, так и окрашенных соединений, В США интерес к использованию адсорбции на силикагеле для разделения и анализа нефтяных фракций усилился главным образом в результате работы Майра и сотрудников [29, 30, 32] по [c.136]

    Была впервые разработана и использована в 1904 г. русским ботаником Цветом в проявительном варианте для разделения отдельных компонентов растительных пигментов. При этом в колонке получались полосы окрашенных веществ (отсюда слово хроматография — цветопись). В химии нефти жидкостно-адсорбционная хроматография используется широко в проявительно-выте-снительном варианте, когда применяется комбинированный метод анализа проявительно-вытеснительный. Рассмотрим применение этого метода для разделения углеводородов бензиновой фракции. Аналогично, с некоторыми модификациями. можно разделить углеводороды других нефтяных фракций. [c.17]

    Рассмотрим экструзионную линию для производства голубых пакетов из рулона пленки, полученной методом раздува. Можно изготовить пакеты из такого рулона и оценить однородность их окраски. Если все пакеты на вид одинаково окрашены, а количественная оценка показывает, что они содержат фактически одно и то же количество голубого пигмента, значит пленка совершенно макрооднородна. И напротив, если анализ показывает, что общая концентрация пигмента практически одинакова во всех пакетах, но внешний вид отдельных пакетов неодинаков, и они имеют пятна, полосы, прослойки и т. д., то это означает наличие определенной текстуры. Следовательно, такой анализ позволяет обнаружить как различия в содержании пигмента в отдельных пакетах, так и различия в текстуре. Если смесь, поступающая в экструдер, неоднородна по составу, то с большой вероятностью можно обнаружить на рулоне пленки участки, окрашенные в голубой цвет и совсем не окрашенные, или участки с широкой гаммой оттенков голубого цвета. [c.186]

    Принцип градиентно-элюентного варианта заложил Цвет. Он для ускорения вымывания из колонки зеленых, наиболее сильно сорбирующихся пигментов к проявляющему растворителю — петро-лейному эфиру — добавлял, этиловый спирт. Этим приемом до сих пор пользуются многие исследователи (в основном биологи), причем в процессе опыта часто добавляют к проявляющему растворителю не одно сильно сорбирующееся вещество, а несколько в последовательности, соответствующей увеличению их полярности. Такая последовательность определяется так называемым элюотроп-ным рядом. Усовершенствовали градиентно-элюентный вариант шведские ученые Тизелиус и его сотрудники в начале пятидесятых годов. Но теория не была разработана. Жуховицкий и Туркельтауб в 1954 г. предложили назвать этот вариант адсорбционным спектральным анализом и сделали попытку разработать теорию применительно к газовой хроматографий. Однако практического применения в газовой хроматографии в отличие от жидкофазной хроматографии этот вариант не получил. Основными препятствиями здесь являются трудности, возникающие при детектировании разделяемых компонентов, поскольку одновременно детектируется переменная концентрация вытеснителя, а также возникает необходимость менять или регенерировать адсорбент после каждого опыта. Это смещает нулевую линию на выходной кривой и вызывает потерю времени на замену и регенерацию адсорбента. [c.20]

    М. С. Цвету же принадлежит первая попытка дать тео рётическое обоснование хроматографическому анализу разработанному им при разделении зеленых пигментов извлеченных экстракцией из листьев растений (рис. 1) Он рассматривает механизм процессов в хроматографической колонке с качественной стороны, не затрагивая количественных закономерностей. [c.6]

    Вплоть до начала 30-х годов XX в. хроматофафия почти не применялась в анализе и снова возродилась лишь в 1931 г. после работ Р. Куна, А. Винтерштайнера, Е. Ледерера, которые широко использовали хроматофафический метод при исследовании растительных и животных пигментов. [c.48]

    На различной адсорбируемостн веществ тем или иным адсорбентом основан метод хроматографического анализа, предложенный в 1903 г. М. С. Цветом. Извлекая петролейным эфиром смесь пигментов из зеленых листьев, М. С. Цвет пропускал раствор через стеклянную трубку с карбонатом кальция и наблюдал, как от- [c.321]

    Как метод анализа хроматография была предложена русским ботаником М. С. Цветом для решения частной задачи — определения компонентов хлорофилла. Метод оказался универсальным. Годом возрождения его является 1931 год, когда Кун, Виптерштейн и Леде-рер стали проводить широкие исследования различных растительных и животных пигментов, используя про-явительный вариант хроматографии, при котором анализируемые веш,ества разделяются, перемещаясь по слою сорбента в потоке растворителя. В 1940 г. шведский ученый А, Тизелиус разработал фронтальный и вытеснительный методы хроматографического анализа. Фронтальный метод заключается в том, что исследуемая смесь непрерывно подается под некоторым давлением на колонку с сорбентом. Компоненты смеси по-разному сорбируются и потому передвигаются по колонке с различными скоростями. Вытеснительный метод основан на том, что более сильно адсорбирующееся вещество вытесняет с поверхности адсорбента слабо адсорбирующееся и занимает его место. Поэтому после введения в колонку определенного количества исследуемой смеси начинают подавать вытеснитель — жидкость, адсорбирующуюся сильнее, чем все компоненты смеси. Тогда зоны веществ распределяются на слое по степени адсорбируемости и каждое последующее вещество, вытесняя предыдущее, подтолкнет его вперед. Этот метод позволяет сконцентрировать компоненты на слое адсорбента и удобен, в частности, для определения примесей. Дальнейшее развитие метода привело к появлению бумажной, тонкослойной и ионообменной хроматографии. Наиболее крупным скачком в развитии метода является создание английскимп химиками А. Мартином и Р. Сингом распределительной хроматографии, за что они были удостоены в 1952 г. Нобелевской премии. [c.326]

    Явление адсорбции газов и паров широко используется для очистки смесей от вредных примесей, для разделения смесей и их анализа. Получила большое развитие газовая хроматография, основанная на открытом М. С. Цветом (1903 г.) методе разделения смесей. В одном из вариантов этого метода — проявительной хроматографии— поток растворителя или несущего газа, содержащего смесь различных компонентов, двигается по адсорбенту. Каждый из комноиентов смеси отличается от других своей адсорбируемостью. Поэтому по мере движения смесь изменяет свой состав, и комионенты разделяются. Название хроматография связано с тем, что М. С. Цвет впервые использовал этот способ для разделения окрашивающих пигментов растений. [c.225]

    Исследованы свойства различных шламов, в частности, гальванического щлама процесса хромирования деталей машин с целью применения его в качестве добавок в глазури для облицовочных, фасадных плиток и плиток для полов [231]. Установлено, что входящие в состав шлама оксиды железа и хрома дают возможность использовать его в качестве красителей глазурей вместо дорогостоящих пигментов и тем самым снизить себестоимость изделий. Использование шлама во фриттованных и частично фриттованных глазурях дает возможность получить плитки салатового, коричневого, горчичного цветов. В частности, установлено, что салатовый цвет глазури придают оксиды FeO СГ2О3, а коричневый — Ге20з СГ2О3. ИК-спектральным анализом установлено, что железо и хром присутствуют в виде Fe , Fe ", Сг ", [c.212]

    МАРГАНЦА ДИХЛОРИД МпСЬ, розовые крист. t 650 °С, /кип 1231 °С раств. в воде (72,3 г в 100 г при 25 °С), плохо — в СП. Образует моно-, ди-, тетра- и гексагидраты. Получ. взаимод. га юобразного H I с Мп, МпО или МпСОя при нагрев. горение Мп в токе СЬ дегидратация гидратов Mg в токе НС1. Продукт хлорирования марганцевых руд и концентратов при получ. Мп. Примен. для получ. пигментов кат. в орг. синтезе реагент для обнаружения 820 , Ю" для обработки семян с целью ускО()ения роста растений в физ.-хим. анализе как репер.  [c.312]

    Современная высокоэффективная жидкостная хроматография (ВЭЖХ) — один из эффективных методов анализа и разделения сложных смесей. Она как метод была открыта в 1903 г. русским ученым-ботаником М.С.Цветом, который использовал для разделения растительных пигментов на их составляющие колонки, заполненные порошком мела [1]. При вымывании пигментов петролейным эфиром они перемещались вдоль колонки, разделяясь при этом на кольца разного цвета. Метод оказался очень удобным и был позднее назван Цветом хроматографией (цветописью). [c.6]

    Одни эксперименты указывали на участие е-аминогруппы опсина, другие— аминогруппы фосфатидилэтаноламина. Недавно, медленно восстанавливая необесцвеченный родопсин с помощью цианборгидрида, удалось получить единственный продукт, анализ которого позволил заключить, что шиффово основание в нативном пигменте образовано по аминогруппе лизина [133]. Согласно результатам исследований модельных систем, сильный батохромный сдвиг спектра поглощения зрительных пигментов относительно спектра свободного ретиналя обусловлен наличием в последних сильно протонированного шиффова основания и сильным взаимодействием между полиеновой цепью ретиналя и белком. [c.65]

    Пигменты часто можно идентифицировать по их ИК-спектрам [2, 131] или рентгенографически, комбинируя, может бьггь, эти методы с анализом на металлы. [c.202]


Смотреть страницы где упоминается термин Пигменты, анализ: [c.35]    [c.436]    [c.10]    [c.236]    [c.39]    [c.267]    [c.307]    [c.609]    [c.736]    [c.748]    [c.161]    [c.97]    [c.374]   
Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.119 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ железосодержащих пигментов

Анализ неорганических пигментов

Анализ неорганических пигментов и наполнителей

Анализ свинцовых пигментов

Анализ цинковых пигментов

Железоокисный желтый, пигмент анализ

Общие методы анализа пигментов и наполнителей

Определение вида пигмента и его качественный i анализ (схемы идентификации)

Органические пигменты методы анализа

Пигмент красный рентгеноструктурный анализ

Спектральный анализ пигментов крови



© 2024 chem21.info Реклама на сайте