Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энтропии влияние на комплексообразование

    Изменение. состава растворителя может также оказывать влияние на устойчивость комплексов путем воздействия на. сольватацию реагирующих частиц, что проявляется в изменении, ка,к энтальпии, так. и энтропия реакции комплексообразования. Как по-.казывают экспериментальные результаты, степень гидратации ионов в присутствии органического растворителя в концентрации до 80% изменяется не намного. Для меньших количеств воды было найдено [4], что изменение устойчивости ко.мплексов пропорционально изменению основности лиганда  [c.151]


    Изменение энтропии для монодентатных лигандов еще усложняется некоторыми факторами, кроме тех, которые оказывают влияние на изменение энтальпии. Можно было бы думать, что процесс упорядочивания, связанный с образованием в растворе одной ионной частицы за счет двух или более других, будет приводить к уменьшению энтропии. В действительности же происходит общее увеличение энтропии, что обусловлено полной или частичной нейтрализацией заряда и освобождением молекул растворителя из сферы сольватации каждого из реагентов. По этой же причине изменение энтропии при комплексообразовании с нейтральными лигандами не будет столь благоприятным. Если координируются полидентатные лиганды, появляются дополнительные факторы. Уменьшение колебательной, вращательной и поступательной энтропии будет большим, но оно будет компенсироваться увеличением энтропии при вытеснении лигандами большего числа молекул растворителя из сольватационной сферы. В связи с этим общее изменение энтропии колеблется от небольших отрицательных значений, например около —2 э. е., до больших положительных значений вплоть до 60 э. е. для полидентатных лигандов. Вообще чем больше заряд и число донорных атомов в хелатообразующем лиганде, тем больше увеличение энтропии. [c.452]

    Сведения о составе равновесной смеси в конкретных условиях эксперимента (температура, концентрация) можно получить, зная константу равновесия реакции комплексообразования К или непосредственно связанное с ней изменение свободной энергии AG в этом процессе (см. уравнение 11.44). Поскольку величины /С и AG позволяют рассчитать степень диссоциации комплексов, их можно рассматривать как меру устойчивости комплексных соединений в растворе и газовой фазе в заданных условиях эксперимента. Хотя величины /С и AG не могут служить истинной мерой энергии ДА-связей, их часто используют в качестве относительной меры энергии координационных связей в рядах различных комплексов. Однако сопоставлять энергию межмолекулярных связей на основе констант равновесия следует с осторожностью. При этом необходимо учитывать влияние энтропийного члена на соотношение величин AG и АЯ. Взаимосвязь параметров AG, АЯ и А5 видна из уравнения (П.45) AG = АН — TAS. Если член TAS мал, то АН AG. Это возможно либо при температурах, близких к абсолютному нулю, либо в процессах, протекающих без изменения энтропии (А5 = 0). Ни то, ни другое условие обычно не выполняется в рассматриваемых реакциях. Во-первых, термодинамические параметры реакций комплексообразования, как правило, определяют при температурах О—100 °С, т. е. при температурах, лежащих значительно выше абсолютного нуля, во-вторых, связывание двух свободных молекул Д и А в одну молекулу комплекса ДА приводит к уменьшению числа степеней свободы системы и, следовательно, к заметному уменьшению энтропии при комплексообразовании (AG < 0). [c.100]


    ЦД. Анализ данных корреляций показывает, что при увеличении энтальпии гидратации АК комплексообразование становится энтальпийно неблагоприятным, но более энтропийно стабилизированным. Исходя из значений энтальпии и энтропии комплексообразования, можно сказать, что образование комплексов является энтальпийно и энтропийно селективным. Необходимо отметить, комплексы 18-краун-6 с такими АК, как Gly, L-a-Ala, L-Leu, L-Phe, L-Asn, L-Gln, L-Ser и L-Thr, являются энтальпийно стабилизированными с отрицательными значениями энтальпий и энтропий комплексообразования, а комплексы с L-Val, DL-Met, L-His и L-Ile - энтальпийно-энтропийно благоприятными. Напротив, ассоциаты Р-ЦД с ароматическими АК имеют противоположный характер стабилизации. Так, комплексы с L-Phe и L-His являются типично энтропийно стабилизированными (положительные значения энтальпии и энтропии), а с L-Trp и L-Tyr - энтальпийно-энтропийно стабилизированными. Кроме того, большая группа АК не образует комплексов с Р-ЦД, а взаимодействие между указанными молекулами является слабым, сопровождается частичной дегидратацией молекул и управляется влиянием растворителя. [c.228]

    На основании уравнения (11-8) можно заключить, что комплексообразованию благоприятствуют отрицательные изменения энтальпии и положительные изменения энтропии, но имеется много примеров, где предпочтительной является только одна из этих величин. Найдено, что относительный вклад каждого из этих факторов зависит как от лигандов, так и от того, каков центральный ион металла. Из ступенчатых констант образования можно определить ступенчатые изменения энтальпии. В одних растворах для ассоциации с ионными лигандами эти величины лежат обычно в пределах от +5 до —5 ккал/моль, а для нейтральных монодентатных лигандов — в пределах от О до —5 ккал/моль, но эти величины для полидентатных лигандов могут быть больше —20 ккал/моль. На обш,ую теплоту образования комплекса оказывают заметное влияние различные свойства как лиганда, так и иона металла. Рассмотрим кратко эти свойства. [c.452]

    Изучение влияния температуры на скорость каталитической реакции дало возможность вычислить энергию активации реакции, которая оказалась равной 11,9 ккал/моль. Полученная величина значительно меньше, чем энергия, необходимая для разрыва какой-либо связи между атомами в реагенте. По-видимому, уменьшение энтропии при образовании комплекса железа с реагентом облегчает разрушение последнего. Это является вероятным, так как известно, что в ряде случаев комплексообразование снижает энергию активации процесса, приводящего к разрыву связей между атомами .  [c.105]

    В начале предыдущего раздела говорилось о том, что суммарный тепловой эффект реакции обусловлен перераспределением химических связей и изменением межмолекулярных взаимодействий. То же самое следует сказать о суммарном изменении энтропии системы. Это значит, что при расчетах по уравнению (11.4) следует учитывать все химические и физические процессы, сопутствующие полимеризации и дающие вклад в изменение энтальпийного и энтропийного членов. Сюда относятся процессы растворения, сжижения, кристаллизации, комплексообразования, взаимодействие мономер—полимер и т. д. Эти процессы могут оказывать сильное влияние на термодинамику полимеризации. [c.70]

    На первый взгляд следует ожидать, что изменение энтропии при комплексообразовании будет всегда отрицательным из-за уменьшения числа свободных частиц при расположении ионов или молекул лигандов вокруг центрального иона металла. Однако следует также учитывать влияние растворителя. Так. как ионы металла ориентируют непосредственно окружающие их молекулы воды, наблюдается тенденция к образованию определенных гидратов, которые можно мысленно представить себе как айсберги , в которых вода заморожена . Этот эффект приводит к образованию в растворе, вне оболочки из молекул воды, неупорядоченной (или тающей ) области [25]. Получающиеся в результате изменения энтропии включают потерю 5,3 энтропийной единицы (равных энтропии кристаллизации воды) на каждую молекулу замороженной воды наряду с неизвестной величиной, идущей на дезориентацию растворителя. Эти изменения являются дополнением к вкладу, предсказанному уравнением Борна, обусловленным взаимодействием иона с поляризующейся диэлектрической средой — водой. Эта составляющая меняется прямо про-порционально квадрату заряда и обратно пропорционально радиусу ячейки, в которой помещается ион. Когда ион металла и анион-лиганд сближаются для образования комплекса, число ионов в растворе будет уменьшаться будет происходить частичная нейтрализация и уменьшение заряда системы и уменьшаться число молекул воды, находящихся в сольватных оболочках ионов. Последний эффект с точки зрения изменения энтропии представляется наиболее важным. Следовательно, в любой реакции между катионом и анионом с образованием комплекса изменение энтропии будет, вероятно, благоприятствовать реакции. Видимо, изменение энтропии будет менее положительным, или более отрицательным, в том случае, когда взаимодействие катиона с лигандом будет приближаться к чисто электростатическому и почти соответствовать образованию ионной пары. [c.64]


    Изменение энтропии для монодентатных лигандов еще усложняется некоторыми факторами, кроме тех, которые оказывают влияние на изменение энтальпии. Можно было бы думать, что процесс упорядочивания, связанный с образованием в растворе одной ионной частицы за счет двух или более других, будет приводить к уменьшению энтропии. В действительности происходит общее увеличение энтропии, что обусловлено полной или частичной нейтрализацией заряда и освобождением молекул растворителя из сферы сольватации каждого из реагентов. По этой же I причине изменение энтропии при комплексообразовании с нейтраль-I ными лигандами не будет столь благоприятным. Если координи- [c.277]

    Обращает на себя внимание необычно высокая положительная величина А5 для миозина (аденозинтрифосфатазы). Такое изменение энтропии, согласно результатам исследования Лейдлера, Оллета и Моралеса [1], объясняется по крайней мере двумя причинами а) нейтрализацией положительного и отрицательного зарядов при взаимодействии фермента с субстратом, сопровождающейся дегидратацией ионов б) существенными конформационными изменениями третичной структуры фермента при комплексообразовании. Исследование влияния температуры на скорость отдельных стадий ферментативной реакции базируется на теории переходного состояния. Согласно этой теории, взаимодействующие молекулы при их сближении образуют переходное состояние (переходный или активированный комплекс), причем между исходным и переходным состоянием устанавливается динамическое равновесие. Вместе с тем, переходный комплекс претерпевает непрерывное превращение с образованием продуктов реакции. С этой точки зрения простейшую ферментативную реакцию Е + З ЕЗ- Е + Р следует рассматривать как многостадийную  [c.131]

    В лигандах типа порфиринов и фталоцианинов большое влияние на прочность комплексов оказывает размер центральной ячейки. Такие крупные ионы, как и РЬ +, могут не поместиться в центре порфиринового ядра [12], в то время как для небольших ионов можно ожидать, что устойчивость комплексов будет уменьшаться с уменьшением радиуса катиона, ибо вследствие жесткости порфиринового ядра степень перекрывания орбиталей иона металла и лиганда будет постепенно падать. Это объяснение прочности комплексов условно рассмотренные комплексы и другие комплексы, включающие полидентатные лиганды, гораздо более устойчивы, чем комплексы с монодентат-ными лигандами. Этот хелатный эффект частично определяется различиями в изменениях энтропии и частично — гораздо большей энергией, требующейся для разрыва всех связей металла в полидентатных комплексах за время, которое мало по сравнению со временем, необходимым для их образования. В добавление к влиянию на комплексообразование размеров ячейки порфиринов и фталоцианинов геометрия этих лигандов требует плоской квадратной конфигурации их комплексов с металлами. [c.57]

    Ввиду неопределенности, свойственной любой попытке предсказать А5 или АН для какой-либо реакции комплексообразования, обсуждение соответствующих изменений свободных энергий может показаться совершенно бесполезным. Тем не менее, если сравнивать комплексы двух сходных металлов с большим числом лигандов, можно сделать ряд полезных заключений. Так, зависимость log (№Ь) от log (2пЬ) для 72 различных лигандов, занимающая логарифмическую шкалу в 19 единиц, является линейной [41] это свидетельствует о том, что в обоих случаях действуют одинаковые факторы. В особом случае комплексов лантанидов с поликарбоновыми кислотами изменения свободных энергий зависят главным образом от изменений энтропии. Поэтому логарифмы констант устойчивости их комплексов с ЕОТА лИ нейно зависят от стандартных значений энтропий ионов лантанидов [42]. С другой стороны, сопровождающие комплексообразование изменения энтропии в ряду Мп(П)—Си(П) являются или в основном постоянными, или же подобны соответствующим изменениям теплот в связи с этим последовательность свободных энергий в этом случае та же, что и для —АН. Аналогично этому для соединений щелочноземельных металлов —АН и +А5 часто меняются в одном направлении, так что комплексы по прочности обычно располагаются по ряду Mg > Са > 8г > Ва. Если преобладает влияние энтропии, свободная энергия меняется в ряду Р> С1>Вг> 1 в противном случае ряд обращается. [c.67]

    TOB щелочноземельных металлов с ЭДТА, для которых хелатный эффект прежде всего определяется энтропией комплексообразования, по крайней мере частично можно объяснить благоприятными дополнительными эффектами такого типа. Уменьшению энергии взаимного отталкивания четырех отрицательно заряженных групп анионов ЭДТА способствует относительно удлиненная и жесткая форма молекул в растворе. Мартел считает, что в этом случае лиганд в хелате из-за низкой прочности координационных связей сохраняет значительную колебательную энергию, что наряду с сольватационным эффектом приводит к высокой энтропии комплексообразования. Точный учет влияния образования и ориентации циклов, внутреннего отталкивания донорных атомов, враша-тельной и колебательной энергий и других факторов на изменение энтальпии и энтропии образования хелатного цикла представляет собой очень сложную задачу, решение которой в настоящее время не представляется возможным [463, 961, 2345]. Величина хелатного эффекта определяется следующими факторами [1347]  [c.58]

    Рассмотрено влияние состава смешанного растворителя вода-ДМСО на энтальпии и энтропии реакций ступенчатого комплексообразования кадмия(П) с этилендиамином. Тепловые эффекты реакций определены калориметрическим методом. Показано, что энтальпия координации этилендиами-на практически не зависит от ступени комплексообразования при любом составе смешанного растворителя. Для энтропий ступенчатых реакций установлено, что для первой и второй ступеней комплексообразования наблюдается энтальпийно-энтропийный компенсационный эффект . Обсуждены термодинамические аспекты образования водородной связи между комплексным ионом и растворителем. [c.25]


Смотреть страницы где упоминается термин Энтропии влияние на комплексообразование: [c.102]    [c.315]    [c.102]    [c.75]    [c.141]    [c.66]    [c.49]   
Лабораторные работы по химии комплексных соединений Издание 2 (1972) -- [ c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние комплексообразования

Комплексообразование

Комплексообразованне



© 2025 chem21.info Реклама на сайте