Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы индикаторные электроды

    Индикаторные электроды. В качестве индикаторных можно применять электроды первого рода. В случае серебра, меди, ртути, свинца, кадмия и некоторых других металлов электродный потенциал соответствует формуле (6.21) и хорошо воспроизводим. Однако в других электродах, состоящих из металла и его ионов в растворе, в электродных равновесиях участвуют оксиды металла. Такие электроды фактически не электроды первого рода. Кроме того, их потенциалы, как правило, плохо воспроизводимы. Подобные электроды, например железный, никелевый, кобальтовый, вольфрамовый, хромовый и др., непригодны в качестве индикаторных. [c.264]


    Стеклянный электрод с металлической функцией может использоваться в качестве индикаторного электрода для определения активности ионов соответствующего щелочного металла. [c.244]

    Выбор индикаторного электрода несколько ограничивает область применения потенциометрического титрования для реакций осаждения и комплексообразования, так как многие металлические электроды, покрывающиеся на воздухе пассивирующим слоем окиси, или вовсе не реагируют на концентрации своих ионов, или правильно показывают потенциал только при больших концентрациях, но не отмечают малых концентраций или их изменений. Кроме того, металлические электроды нельзя применять, если в растворе имеются ионы металла, расположенного в ряду напряжений за металлом индикаторного электрода, так как возможно вытеснение одного металла другим из раствора соли и, наконец, металлы, растворимые в кислотах, не могут быть использованы в качестве индикаторных электродов в кислых растворах. [c.187]

    Выбор индикаторного электрода несколько ограничивает область применения потенциометрического титрования для реакций осаждения и комплексообразования, так как многие металлические электроды покрываются на воздухе пассивирующим слоем оксида и не чувствительны к концентрации своих ионов. Кроме того, металлические электроды неприменимы, если в растворе имеются ионы металла, расположенного в ряду напряжений после металла индикаторного электрода, так как происходит вытеснение одного металла другим из раствора соли. Металлы, растворимые в кислотах, не применимы как индикаторные электроды в кислых растворах. [c.111]

    Индикаторные электроды в реакциях осаждения и комплексообразования являются более или менее избирательными. Это объясняется тем, что виды ионов, входящих в состав осадков и комплексов, самые разнообразные, а индикаторный электрод должен быть обратимым хотя бы относительно одного вида. Между тем не всегда можно располагать электродом, обратимым относительно этих видов ионов, из-за большой электролитической упругости растворения ряда металлов либо по другим причинам. [c.31]

    Потенциометрическое определение pH водных растворов является надежным методом, дает истинное значение растворе. При этом можно пользоваться различными индикаторными электродами водородным, металл-оксидными, хингидрон-ным, стеклянным и некоторыми другими. [c.36]

    Допустим, что в качестве индикаторного электрода применен металл титруемого катиона. Тогда электрохимические реакции будут  [c.71]


    Электронообменные электроды. В окислительновосстановительных реакциях в качестве индикаторных электродов часто применяют инертные металлы, например, платину, золото. Потенциал, возникающий на платиновом электроде, зависит от отношения концентраций окисленной и восстановленной форм одного или нескольких веществ в растворе. [c.119]

    Металлические индикаторные электроды изготавливают из плоской металлической пластинки, скрученной проволоки или металлизированного стекла. Обычно при погружении в раствор такого электрода быстро устанавливается равновесие. Очень важно перед работой тщательно очистить поверхность металла хорошим методом очистки является быстрое погружение электрода в концентрированную азотную кислоту и последующее многократное промывание дистиллированной водой. Отечественная промышленность выпускает тонкослойный платиновый электрод ЭТПЛ-01М. [c.119]

    Потенциометрическое титрование под током (г Ф 0) успешно может быть использовано во всех указанных выше случаях. Метод заключается в том, что через индикаторный электрод с помощью внешнего источника тока пропускают ток малой величины (несколько микроампер), иначе говоря, поляризуют электрод. При этом вследствие быстрого обмена большим количеством электронов на поверхности раздела металл — раствор довольно скоро устанавливается разность потенциалов, устойчивая и хорошо воспроизводимая, значение которой зависит от величины тока поляризации. [c.51]

    Полярография с накоплением может быть не только амальгамной. За последнее время быстро развивается так называемая пленочная полярография с накоплением. В качестве индикаторных электродов здесь используются твердые электроды, главным образом графитовый. Определяемые вещества накапливаются на электроде в чистом виде (металлы) или в виде различных соединений, а затем происходит растворение осадка при меняющемся потенциале. [c.168]

    Графитовый электрод позволяет работать в несколько более отрицательных областях потенциалов, чем электроды из благородных металлов, но из-за пористой структуры, обусловливающей адсорбцию веществ из раствора, он дает несколько менее воспроизводимые результаты измерения электрических параметров и высокий остаточный ток. Однако при соответствующей обработке (пропитка различными составами, например смолами, парафином и пр.) графит оказывается очень полезным генераторным (а так же индикаторным) электродом. [c.208]

    Электроды первого рода используют, как правило, в качестве индикаторных электродов. Индикаторные электроды позволяют определять активность ионов металлов путем измерения их потенциалов. [c.251]

    Индикаторные электроды должны быть химически устойчивы по отношению к веществам, находящимся и растворе. Так, цинковый электрод непригоден в кислых растворах, потому что металл будет растворяться в кислоте. Цинковым электродом нельзя воспользоваться, если в растворе содержатся катионы более электроположительных металлов, например меди, так как катионы меди будут вытесняться цирком из раствора  [c.461]

    Индикаторные электроды для потенциометрического титрования должны удовлетворять еще такому условию потенциал должен устанавливаться быстро, иначе титрование требует много времени. Существует сравнительно мало электродов, удовлетворяющих этому условию. Так, состояние равновесия между свинцовым, медным, висмутовым электродами и растворами солей этих металлов устанавливается очень медленно, и эти электроды редко применяют для титрования. [c.461]

    Индикаторным электродом служит погруженная в раствор металлическая проволока, реагирующая на изменение концентрации одноименных ионов в растворе. Система металл — катион металла представляет собой так называемый электрод первого рода. Потенциал такого электрода определяется уравнением Нернста  [c.463]

    Применяют также электроды из других индифферентных металлов, например из палладия, золота и др. В отличие от индикаторных электродов методов осаждения и комплексообразования здесь нет равновесия между металлом электрода и ионами этого металла в растворе. Индикаторный электрод служит только проводником электронов, приобретая больший или меньший потенциал в зависимости от интенсивности притяжения электронов окисленной формой, что в свою очередь определяется природой находящихся в растворе ионов и их концентрацией. [c.467]

    Следует заметить, что не всем металлическим электродам присуще свойство обратимости. Многие металлы покрываются на воздухе пассивирующим слоем оксида (электроды из алюминия, вольфрама, хрома и др.) и либо совсем не реагируют на свои ионы, либо реагируют на изменение лишь больших концентраций. Кроме того, металлические электроды нельзя применять в растворах, содержащих ионы металлов, расположенные правее в ряду напряжений, поскольку в этом случае возможно вытеснение одного металла другим. И, наконец, металлы, растворимые в кислотах, не могут быть использованы как индикаторные электроды в кислых растворах. [c.110]


    Электрометрическое или потенциометрическое титрование. В сосуд 1 (рис. 94) с испытуемым раствором опускают проволоку 3 из соответствующего металла (индикаторный электрод) так, например, при титровании солей серебра применяют серебряную проволоку. При окислительно-восстановительном титровании берут платину. Сосуд с испытуемым раствором с помощью полупроницаемой перегородки или трубки 4 соединяют с другим сосудом 2. В этом сосуде находится раствор другого вещества, концентрация которого во время работы не изменяется. Чаще всего применяют труднорастворимые соли закиси ртути (например, HgJ l2 или Нй ЗО . На дно такого сосуда наливают [c.435]

    Электрометрическое, или потенциометрическое, титрование. В сосуд 1 (рис. 95) с испытуемым раствором опускают проволоку 3 из соответствующего металла (индикаторный электрод) так, например, при титровании солей серебра применяют серебряную проволоку. При окислительно-восстановительном титровании берут платину. Сосуд с испытуемым раствором с помощью полупроницаемой перегородки или трубки 4, наполненной раствором электролита, соединяют с другим сосудом 2. В этом сосуде находится раствор другого вещества, концентрация которого во время работы не изменяется. Чаще всего применяют труднорастворимые соли закиси ртути (например, Hg2 l2 или Hg2S04). На дно такого сосуда наливают ртуть, которая и является электродом. Этот электрод называют стандартным электродом, или электродом сравнения, так как во время работы его потенциал не изменяется, тогда как в сосуде 1 потенциал электрода 3 резко-изменяется вследствие изменения концентрации при титровании. [c.428]

    Первый шаг в подготовке пробы к анализу состоит в пропускании воды через фильтр с порами 0.45 мкм для отделения часгиц q/спензии Затем фильтрат подкисляют соляной кислотой до pH 2 для предотвращения адсорбции определяемых ионов на сгенках посуды. При этом многие комплексные формы распадаются вследствие диссоциации. Однако в пробах воды практически всегда содержатся органические соединения, которые способны образовывать довольно усто№швые комплексы с ионами металлов и адсорбироваться на поверхности индикаторного электрода, препятствуя процессам электрохимического концентрирования и растворения. Для устранения мешающего влияния органических компонентов применяют облучение гфоб УФ-светом, электрохимическое окисление или кислотное разложение. На рис. 7.3 приведена общая схема пробоподготовки воды при определении в ней токсичных металлов с применением ИВА. Стадии фильтрации и УФ-облучения могут быть пропущены, если вода не содержит в заметных количествах органических компонентов и твердых частиц. [c.279]

    Ко.тичвство сконцентрированного на индикаторном электроде металла зависит в значительной степени от состава раствора. Им а основном определяются подвод электроактивного вещества к электроду, перенос заряда между электроактивным веществом и электродсж,отвод продуктов реакции переноса заряда и т.д. Пси выборе основного фонового раствора необходимо,чтобы концентрация электропроводящих частиц в растворе была достаточной,сохранялось постоянство коэффициентов диффузии и активности. Для создания фоновых вастворов чаще используются минеральные кислоты основания,соли различных металлов. В нашем случав при разработке методики оптимальные условия получены Щ1И использовании азотной кислоты.Она добавляется в количестве I мл к 100 мл воды. Кроме того,азотная кислота используется при озолении и растворении анализируемого образца. Использование одного вещества в качестве фонового и для озоления устраняет дополнительные загрязнения.вносимые в раствор различными реагентами. [c.104]

    При рассмотрении индикаторных электродов, применяемых в потенциометрическом методе, по различным типам химической реакции можно заключить, что только в окислительно-восстановительных и кислотно-основных реакциях они являются универсальными. Независимо от природы окислителя или восстановителя в качестве индикаторного электрода в редоксметрии или редоксметрическом титровании может быть использован один и тот же благородный металл (платина или золото), являющийся переносчиком электронов. То же можно сказать об индикаторных электродах в методе рН-метрии или кислотно-основного титрования независимо от природы титруемых кислот или оснований и титрантов химическая реакция связана с изменением концентрации ионов водорода (pH) в растворе поэтому доста- [c.30]

    Обычно потенциалопределяющим компонентом является комплек-сообразуюший катион, если индикаторным электродом может служить металл этого катиона. [c.78]

    Окислительно-восстановительное титрование. Индикаторными электродами, применяемыми в этом методе, могут служить электроды из благородных металлов, являющихся переносчйками. электронов. [c.110]

    При определении катионов металлов целесообразно использовать металлический индикаторный электрод. Например, серебряный индикаторный электрод можно применять во всех реакциях, где участвуют ионьг А +. Однако не все металлы пригодны для изготовления индикаторных электродов, так как редокс-потенциал системы часто устанавливается недостаточно быстро и воспроизводимо и, кроме того, многие металлы могут восстанавливать ионы Н+ анализируемых растворов до Нг, т. е. растворяться. [c.313]

    В качестве индикаторного электрода часто используется так называемый стеклянный электрод. Он представляет собой тонкостенный стеклянный шарик, внутри которого помещен электрод сравнения, например хлорсеребряный. Стекло является переохлажденным раствором силикатов, содержащим катионы щелочных металлов и анионы типа 510з . Стеклянный шарик предварительно выдерживается в крепком растворе кислоты, где происходит обмен катионами между стеклом и раствором и стекло насыщается ионами водорода. При определении pH в исследуемый раствор опускается стеклянный электрод и еще один электрод сравнения. В результате образуется следующая цепь  [c.247]

    Выпускаемые рН-метры со стеклянными электродами с достаточно толстой стенкой шариков ( -0,1 мм) позволяют измерять с большой точностью [Н+] до pH 13, но при умеренных концентрациях ионов щелочных металлов. Эти рН-метры снабжены усилителями с большим коэффициентом усиления тока, что дает возможность непосредственно измерять pH раствора, не прибегая к компенсационному методу измерения с применением очень чувствительных индикаторов тока. Поэтому стеклянные индикаторные электроды широко используются в практике киглотно-основного титрования и в других областях потенциометрических измерений, а кроме того, и при неводном титровании. Далее, поскольку они химически инертны, могут быть непосредственно помещены в титруемый раствор при использовании их в качестве электрода сравнения. При этом увеличивается компактность гальванического элемента (исключается электролитический ключ). [c.61]

    Индика1 орные электроды при потенциометрическом титровании по методам осаждения и комплексообразования. Различные осадки и комплексные соединения состоят из самых разнообразных ионов, и потому не существует такого универсального индикаторного электрода, который мог бы быть обратимым относительно всех катионов и анионов. Кроме того, не всегда можно располагать металлическим электродом, обратимым относительно своих ионов, из-за большой электролитической упругости растворения ряда металлов (легко окисляющихся Н -ионами раствора) или такими твердофазными веществами, в состав которых входит хотя бы один из ионоБ, образующих в процессе титрования осадки или комплексные соединения, но в другой степени его окисления или восстановления. Малая селективность индикаторных электродов, казалось бы, сильно ограничивает возможность использования потенциометрического метода в реакциях осаждения и комплексообразования. Однако применение электродов второго рода позволяет заметно расширить область применения потенциометрического титрования. [c.61]

    Впервые метод амперометрического титрования с двумя индикаторными электродами описан Саломоном (1897—1898) для количественного определения серебра и других металлов с серебряными электродами путем титрования до прекращения тока. [c.239]

    Л. Я. Поляк и Б. Н. Кабанов изучили скорости процессов, прот -кающих при потенциометрическом титровании. Многие химические реакции вследствие малой их скорости не используются в потенциометрии, так как медленно устанавливается электродный потенциал. Были найдены условия, ускоряющие эти процессы, например для редокссистемы [Ре(СМ)в] ЛРе(СЫ)в] при титровании ряда металлов, образующих труднорастворимые ферроцианиды. Для нахождения условий титрования был использован метод А. Н. Фрумкина — снятие кривых поляризации электродов, позволяющее изучить кинематику установления потенциалов на индикаторных электродах и изменение потенциалов во времени. Установлено, что при потенциометрическом титровании ионов цинка, кадмия и других металлов ферро-цианид-ионом ионы металлов не участвуют в установлении потенциала платинового электрода. Чтобы облегчить установление потенциала при титровании ионов цинка или кадмия ферроцианидом, в раствор вводят некоторое количество феррицианида калия Kз[Fe( N)в. Хотя в растворе идет осаждение катионов ферроцнанидом, на самом деле на индикаторном электроде регистрируется типичная окислительно-восстановительная реакция ее равновесный потенциал опре- [c.506]

    Индикаторные электроды методов оваждения и комплексообразования. Принцип этих методов состоит в переводе определяемых ионов в малорастворимые соединения или в связывании их в устойчивые растворимые комплексные соединения. В обоих случаях при титровании изменяется концентрация ионов металла в растворе. [c.462]

    В кач-ве поляризующегося индикаторного электрода применяют ртутный электрод, но чаще твердые электроды из благородного металла (обычно платины) или углеродного материала (графита, стеклоуглерода и др.). В А. т. можно использовать два индикаторных электрода (без электрода сравнения), выполненных из одного и того же материала в виде пластин с одинаковыми относительно большими поветями (1 X 1 см). Этот вариант иногда неправильно паз. биамперометрич. титрованием. Электроды погружают в титруемый р-р, сйдержащий два электроактивных в-ва и индифферентный электролит. К электродам при- [c.156]

    Электрохим. превращение данного компонента газовой смеси со 100%-ным выходом по току (т.е. отсутствие побочных электродных р-цнй) обеспечивается выбором индикаторного электрода и его потенциала. Необходимое постоянное значение разности потенциалов поддерживается благодаря тому, что сравнит, и индикаторный электроды выполняют из двух разных специально подобранных металлов, напр, из Аи и 2п, Аи и РЬ, N1 и С<1 (ячейки гальванич. типа). Разность потенциалов можно стабилизировать и посредством электронной системы с использованием третьего вспомогат. электрода (ячейки потенциостатич. тнпа). [c.459]

    ПОЛЯРОГРАФИЯ, разновидность вольтамперометрии с использованием индикаторного микроэлектрода из жидкого металла, пов-сть к-рого периодически или непрерывно обновляется. При этом не происходит длительного накопления продуктов электролиза на пов-сти раздела электрод-раствор в электролитич. ячейке. Индикаторным электродом в П. служит чаще всего ртутный капающий электрод. Используют также капающие электроды из жидких амальгам и расплавов, струйчатые электроды из жидких металлов, многокапельные электроды, в к-рьгх жидкий металл или расплав продавливают через диски из пористого стекла, и др. [c.68]

    ТО есть на поляризацию индикаторного электрода расходуется только часть налагаемого напряжения. Но при условии, что площадь поверхности анода во много раз больше, чем у катода, поляризацией анода можно пренебречь, потому что из-за малой плотности тока его потенциал будет оставаться нрактически постоянным. Если сопротивление раствора уменьшить, то слагаемым Ш можно пренебречь, потому что в полярографической ячейке редко возникают токи, сила которых выше нескольких десятков микроампер. Для снижения сопротивления в анализируемый раствор вводят избыток индифферентного электролита, или просто фона. В качестве фона пригодны различные соли щелочных и щелочноземельньк металлов, растворы кислот, щелочей, а также разнообразные буферные смеси. Нри этих условиях можно полагать, что практически все налагаемое на ячейку внешнее напряжение расходуется на изменение нотенциала индикаторного электрода, то есть в и Е . Перед регистрацией нолярограммы необходимо удалить из раствора растворенный кислород, который восстанавливается на ртутном электроде. Растворимость кислорода в разбавленньк растворах электролитов довольно высокая, около 10 " моль/л, поэтому он мешает полярографическому определению большинства веществ. Из раствора кислород можно удалить, барботируя через него какой-либо электрохимически инертный газ (азот, гелий, аргон). В этом случае ячейка должна быть достаточно герметичной, а избыток газа следует отводить через гидрозатвор. Во время регистрации нолярограммы, для того чтобы кислород воздуха не попадал в ячейку, над поверхностью раствора рекомендуется пропускать ток инертного газа. Для удаления растворенного кислорода необходимо 15-20 минут барботировать инертный газ, а при работе с низкими концентрациями вещества и в случае очень точньк измерений требуется увели- [c.165]

    Na2H2Y). Указанная система применяется в качестве индикаторного электрода для определения ионов металлов, особенно в тех случаях, когда металлические электроды не являются обратимыми. Возможность применения данной электрохимической системы обусловлена, прежде всего, высокой плотностью так называемого тока обмена между металлической ртутью и комплексом с ЭДТА и быстрым установлением равновесия электродной реакции. [c.114]

    В качестве индикаторного электрода обычно применяют платиновый электрод, потенциал которого устанавливается практически мгновенно и в точке эквивалентности изменяется на 350 мВ на каждые 0,05 мл титранта. В кислых растворах (pH < 3) образование комплекса Ре " с ЭДТА протекает относительно медленно, что отражается на скорости установления равновесного потенциала. В растворах с pH 4-5 равновесный потенциал устанавливается достаточно быстро. Кроме платинового электрода применяют серебряный или электроды из других благородных металлов. Таким же способом можно титровать ионы Си(П) в присутствии небольших количеств Си(1). [c.244]


Смотреть страницы где упоминается термин Металлы индикаторные электроды: [c.433]    [c.278]    [c.103]    [c.31]    [c.314]    [c.20]    [c.77]    [c.461]    [c.82]    [c.234]   
Основы аналитической химии Часть 2 (1979) -- [ c.422 ]




ПОИСК





Смотрите так же термины и статьи:

Электрод индикаторный

индикаторный



© 2025 chem21.info Реклама на сайте