Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медноаммиачный свойства

    Идентификация красителей на волокне основана на тех же общих принципах, что и идентификация их как таковых. И действительно, обе методики связаны друг с другом. Одним из основных признаков для открытия и характеристики красителя является взаимосвязь между красителем и волокном. Кроме того, применяя крашение волокна, соответствующего данному красителю, можно ээффективно отделить красящее вещество от неорганических примесей и веществ, не обладающих красящими свойствами. Цветные реакции и капельные пробы часто выполняются непосредственно на окрашенном волокне. Иногда приходится сгонять краситель с окрашенного текстильного материала (например, путем экстракции растворителя) и исследовать затем краситель как таковой. Экстракт в растворителе можно использовать непосредственно для наблюдения спектров поглощения. Однако в связи с идентификацией красителей на волокне возникает несколько специальных вопросов. В то время как при анализе красителя, как такового, обычно имеются достаточно большие количества для его всестороннего исследования, при анализе красителя на волокне часто в распоряжении исследователя оказывается всего несколько квадратных дюймов окрашенной или набивной ткани. В этих случаях необходимо использовать микрометоды и проявить большое умение и широкое знание процессов крашения, печати и ассортимента красителей. При этом первая стадия исследования должна состоять в определении природы волокна или смеси волокон в окрашенном текстильном материале (см. гл. VI), так как, зная природу волокна, можно направить исследование красителя по более определенному пути. Шерсть чаще всего бывает окрашена кислотными или кислотно-протравными красителями, шелк — кислотными красителями или прямыми красителями для хлопка, хлопок — субстантивными, азоидными, сернистыми и кубовыми красителями (в ситцепечатании к ним присоединяются хромирующиеся протравные и основные красители), вискоза и медноаммиачный шелк — теми же красителями, кроме сернистых. Для крашения ацетилцеллюлозы применяют определенную группу азокрасителей и антрахиноновых красителей. [c.1524]


    Свойства медноаммиачных растворов целлюлозы. Медноаммиачные растворы целлюлозы обладают рядом особенностей, кото- [c.147]

    Ацетатное волокно, в отличие от вискозного и медноаммиачного, представляющих собой химически неизмененную целлюлозу, состоит из эфира целлюлозы. Этим определяются специфические свойства ацетатного волокна — больщая эластичность, обусловливающая меньшую сминаемость тканей, меньшая термическая стойкость (темп, плавл. 215—220°). При крашении изделий, в состав которых входят и целлюлозное и ацетатное волокна, эти волокна вследствие различия их химической природы окрашиваются в неодинаковые цвета. Этим пользуются для придания тканям специальных цветовых эффектов, значительно улучшающих внешний вид тканей. [c.440]

    Ацетатное волокно, в отличие от вискозного и медноаммиачного, состоит из эфира целлюлозы. Это определяет специфические свойства ацетатного волокна—большую эластичность (меньшая сминаемость тканей) и меньшую термическую стойкость (деформируется при температуре выше 140—150 °С). При крашении изделий, в состав которых входят как целлюлозные, так и ацетат- [c.462]

    ВВ не термопластичны и могут кратковременно использоваться без снижения механических свойств при температуре 100—120°С. Устойчивы к действию воды и неполярных органических растворителей (бензин, бензол), в которых не набухают. При действии концентрированных минеральных кислот при нормальной температуре и разбавленных кислот при нагревании, а также щелочей в присутствии кислорода воздуха подвергаются деструкции. Сильно набухают в разбавленных растворах щелочей и растворяются в медноаммиачном растворе. ВВ неустойчивы к действию микроорганизмов, которые вызывают их деструкцию. [c.413]

    Лигнины проявляют катионо-обменные свойства. Так, периодатный лигнин может собирать из разбавленных щелочных растворов до 1,5 мэкв катионов на грамм лигнина. Количество щелочи, поглощенной медноаммиачным лигнином из водных растворов, достигает 5% от его массы, а сернокислотным - до 10% и более. [c.421]

    Вискоза и в этом случае характеризуется слабо выраженными эластическими свойствами даже по сравнению с медноаммиачным раствором целлюлозы и раствором КМЦ, хотя они получены из одного и того же полимера. Поэтому можно полагать, что упругие свойства вискоз связаны не только с собственной жесткостью [c.125]

    Целлюлоза [СвН702(0Н)з] является самым распространенным природным полимером. Ее получают из хлопка (хлопковая целлюлоза или линт) или из древесины (древесная целлюлоза). Молекулярный вес целлюлозы колеблется от 50 ООО до 200 ООО. Содержащиеся в каждом элементарном звене гидроксильные группы придают целлюлозе свойства спирта и могут вступать в реакции этерификации и алкилирования. Целлюлоза не растворяется ни в воде, ни в органических растворителях, она с трудом растворяется в медноаммиачном растворе и водном растворе хлористого цинка. Ее,температура [c.97]


    При изготовлении вискозного и медноаммиачного волокон из природной целлюлозы получают растворимые производные, из растворов которых формуют волокна требуемой формы, длины, тонины и с нужными физико-механическими свойствами. При формовании таких волокон в осадительной ванне происходит регенерирование целлюлозы, образуются так называемые гидратцеллюлозные волокна. По относительной молекулярной массе, физической структуре, форме упаковки и расположению макромолекул, а также по ряду других особенностей строения волокна из регенерированной целлюлозы существенно отличаются от природных целлюлозных волокон — хлопка и льна. [c.21]

    Вискозное и медноаммиачное волокна по свойствам похожи на растительные волокна (хлопок), однако менее прочные, особенно в мокром состоянии и при высокой влажности стойки к глажению. Из них изготавливают штапельное волокно и текстильную нить для производства ковров, сукна (в смеси с шерстью), легких шелковых тканей, трикотажных изделий, технических тканей и т. д. [c.590]

    О физических свойствах медноаммиачного раствора в литературе почти не упоминается, вероятно, ввиду применения растворов самых различных составов. Некоторые физические свойства медноаммиачного раствора (примерные) приведены в табл. 48. [c.251]

    Свойства медноаммиачного раствора при 20°  [c.254]

    Целлюлоза способна растворяться в медноаммиачном реактиве — растворе гидроокиси меди в концентрированном аммиаке предположительно при этом образуются комплексные соединения. При действии кислот из таких растворов выделяется осадок целлюлозы, отличающейся от исходной некоторыми физическими свойствами, носящей общее название регенерированной целлюлозы или гидрат-целлюлозы. [c.229]

    Менее распространенным является медноаммиачный способ, при котором используется характерное свойство целлюлозы — ее способность растворяться в аммиачном растворе оксида меди (П) 1Си(КНз)4] ОН)2 (реактив Швейцера). Из этого раствора действием кислот вновь выделяют целлюлозу. Нити волокна получают продавливанием медноаммиачного раствора сквозь фильеры в осадительную ванну с раствором кислоты. [c.496]

    Некоторые свойства целлюлозы затрудняют переработку ее в полуфабрикаты (волокна, пленки и пластики). В частности, формование изделий из расплавов невозможно, так как температура плавления целлюлозы выше температуры ее разложения. Формование изделий из раствора затруднено тем, что растворимость целлюлозы незначительна вследствие сильного межмолекулярного взаимодействия. Среди немногочисленных растворителей целлюлозы практическое применение с целью перевода ее в состояние, пригодное для формования волокон, нашел лишь так называемый медноаммиачный раствор [Си (ЫНз)4(ОН)2] — реактив Швейцера. [c.48]

    Представляя собой сложный эфир, ацетатное волокно обладает более ценными свойствами по сравнению с вискозным и медноаммиачным волокном оно менее гигроскопично и более прочно во влажном состоянии, имеет меньший удельный вес, более мягко и упруго, по внешнему виду более похоже на натуральный шелк. [c.86]

    Ривс 141], на основании изучения медноаммиачных комплексов и действия щелочей, пришел к заключению, что глюкозные остатки в амилозе содержатся не в одной, а в двух конформациях — конформациях ванны В1 и ЗВ. При действии щелочей (которые, как известно, изменяют свойства амилозы) происходит изменение конформации В1 в ЗВ, т. е. в щелочной амилозе все глюкозные остатки находятся в конформации ЗВ (рис. 16). [c.20]

    Менее распространенным является медноаммиачный способ, при котором используется характерное свойство целлюлозы —ее способность раство- [c.491]

    Вискозное и медноаммиачное волокно можно окрашивать красителями, применяемыми для крашения хлопка, но в деталях процесс крашения должен быть существенно изменен. Искусственное волокно в процессе крашения должно обрабатываться руками, весьма тщательно, без трения и натяжения. Характерным свойством искусственного волокна является уменьшение прочности на разрыв в мокром состоянии, однако этот недостаток в настоящее время составляет менее серьезную проблему, чем в ранний период производ- [c.300]

    После окончания опыта силикагель можно регенерировать, т. е. восстановить его адсорбционные свойства. Слив раствор с окрашенного силикагеля, его обрабатывают разбавленной соляной кислотой, которая разрушает медноаммиачный комплекс, промывают водой, высушивают и прокаливают. [c.218]

    Физико-химические свойства некоторых медноаммиачных формиатно- и ацетатно-карбонатных растворов приведены в табл. 111-111—111-115. [c.310]

    Шюрх не смог установить, что какое-либо другое свойство растворителей могло определять растворимость лигнина. Интересно отметить, что набухание елового медноаммиачного лигнина возрастало примерно в таком же порядке, как растворимость других препаратов лигнина (см. Брауне, 1952, стр. 206). [c.207]


    Целлюлоза растворима в растворах окиси меди в аммиаке, т. е. в аммиачной гидроокиси меди (швейцаров реактив). Точный механизм растворения неизвестен. Возможно, что при этом образуется сложное координационное соединение. Вязкость медноаммиачного раствора является важным указателем степени его деградации. Недеградированная а-целлюлоза имеет высокую вязкость, несомненно, вследствие большой длины ее молекулярных ценей (стр. 175). Замечательное соотношение между вязкостью медноаммиачного раствора и другими физико-химическими свойствами целлюлозы указывает на отсутствие существенных изменений в длине цепи при растворении в швейцеровом реактиве. В свое время относительно большое количество искусственного шелка производилось по медноаммиачному способу, и полученный продукт обладал наивысшим качеством. В частности, получались исключительно тонкие нити до 1 денье , мягкие наощупь и блестящие. Техника прядения здесь в основном та же, что и в вискозном процессе. Схема процесса показана ниже (см. схему 2) [c.369]

    Высказывалось предположение, что цел-пюлоза не участвует в каких-либо химических реакциях, будучи просто диспергирована в растворе цементирующих пектиновых веществ, которые скрепляют и удерживают отдельные частицы целлюлозы или мицеллы в природном волокне. Однако это предположение вряд ли совместимо с тем, что целлюлоза может быть повторно восстановлена из медноаммиачного раствора без заметного изменения свойств. Трудно представить себе, как это пектиновое рвщество, связывающее частицы природной целлюлозы, может быть регенерировано по осаждении. [c.369]

    Воздушно-сухое волокно беленой сульфитной целлюлозы (с содержанием влаги 10%) начинает деформироваться только при давлении 500 кГ1см . То же волокно в набухшем состоянии (влагосодержание, включая воду, заполняющую люмен, около 35%) при таком же давлении сплющивается до 20% от первоначальной толщины и при дальнейшем увеличении давления начинает распадаться. Если то же волокно выдержано в медноаммиачном растворе (влагосодержание около 95%), то оно до 20% остаточной толщины деформируется уже при 12 кГ1см и раздавливается при давлении 35 кГ/см . О том, как меняются эти свойства у разных видов волокон, данных еще мало, но на примере с пучком волокон древесной массы видно, что различие может достигнуть нескольких порядков (рис. 3). [c.244]

    Естествен1ю, что в целлюлозе, где энергии связи между цепями значительно выше, чем те же величины для углеводородных цепей каучука, эти процессы будут протекать гораздо медленнее. Если мы подвергнем целлюлозу набуханию, увеличив тем самым расстояния и понизив энергию взаимодействия между цепями, эти процессы будут протекать соответственно скорее. В. А. Давыдовым совместно с одним из нас были получены (путем коагуляции медноаммиачных растворов) гели целлюлозы, содержащие лишь 2% -целлюлозы. Эти гели дава.ии 2—3-кратное упругое удлинение и сокращались практически моментально. Таким образом, при весьма сильном набухании целлюлозы, когда энергия взаимодействия между цепями становится очень малой, мы получае.ч гели, по своим свойствам весьма близкие к каучуку. [c.26]

    Материал, из к-рого изготавливают Ф., их форма и размеры, а также размеры и количество отверстий определяются способом, средой и темп-рой формования волокон, составом и свойствами прядильного р-ра или расп.пава, типом и видом волокон. Ф., как правило, изготавляют из металлов, хотя известны попытки ис-иользоваиия стекла и керамики. При сухом сиособе формования и ири иолучении медноаммиачных волокон по мокрому способу используют никелевые Ф. В производстве вискозных волокон Ф. должны быть кислото-и щелочностойкими (т. к. осадительная ванна содержит 10—15% серной к-ты, а прядильный р-р — 6—7% щелочи) и поэтому их изготавливают из сплавов платины с золотом или иридием, тантала и др. При формовании волокон из расплавов применяют Ф. из высоколегированных жаропрочных нержавеющих сталей. [c.372]

    После вытяжки осуществляют релаксацию или термофиксацию волокна. При мокром способе, в отличие от др. методов, структура и свойства волокна существенно зависят от способа его сушки. Если сушку проводят под натяжением, получаемое волокно при смачивании дает усадку. При сушке происходит также необратимое сплющивание (коллапсирование) пор, вследствие чего снижается сорбционная способность волокон, особенно по отношению к красителям. Скорость Ф. в. при мокром способе вследствие медленного протекания диффузионных процессов и большого гидродинамич. сопротивления осадительной ванны не превышает 100—150 м1мин. Число отверстий в фильере достигает 12 000—20 ООО и да ке 100 000 — 150 ООО. По этому методу в основном производят штапельные волокна — вискозные, полиакрилопитрильные, поливинилспиртовые. Комплексные нити производятся по мокрому способу практически только из вискозных р-ров (вискозный шелк и корд) и в небольших количествах — из р-ров нолиакрилонитрила. Предпочтение в этом случае по экономич. соображениям отдается выпуску нитей повышенной толщины. По мокрому способу производятся также медноаммиачные волокна. [c.377]

    Изучение волокон сыграло важную роль в развитии химии высокомолекулярных соединений (гл. 8). Пионерские работы Штаудингера по выяснению структуры целлюлозы и натурального каучука (1920 г.) привели к представлению о том, что эти вещества состоят из длинноценочечных молекул высокого молекулярного веса (т. 4, стр. 83), а не из коллоидальных ассоциа-тов небольших молекул. Исследование Штаудингера, выводы которого были позднее подтверждены данными по рентгеноструктурному изучению целлюлозы (Мейер и Марк, 1927 г.), положило начало пониманию макромолекулярной природы полимеров. Вскоре после этого Карозерс с сотрудниками разработали рациональные методы синтеза волокнообразующих полимеров. Приблизительно в конце прошлого века были получены гидратцеллюлозные волокна — вискозное и медноаммиачное (т. 4, стр. 93), а в 1913 г. появилось сообщение о возможности получения волокна из синтетического полимера (поливинилхлорида). Однако это изобретение не было реализовано в промышленности. Первым промышленным чисто синтетическим волокном был, по-видимому, найлон-6,6 (т. 1, стр. 172), производство которого началось в 1938 г. Вслед за ним очень быстро были выпущены найлон-6, волокно ПЦ (из хлорированного поливинилхлорида), виньон (из сополимера винилхлорида с ви-нилацетатом, 1939 г.), саран (из сополимера винилхлорида с винилиденхлоридом, 1940 г.), полиакрилонитрильные волокна (1945 г.) и, наконец, терилен (из полиэтилентерефталата, 1949 г.) (т. 1, стр. 170). В последующие годы не было выпущено ни одного нового многотоннажного волокна происходило лишь расширение производства и улучшение свойств уже существующих волокон. Вместе с тем разработаны и продолжают разрабатываться многочисленные волокна специального назначения, что свидетельствует о большом размахе исследований в этой области. [c.282]

    Хлопок легко абсорбирует воду. Однако он не растворяется даже в растворах реагентов, энергично разрушающих водородные связи, таких, как бромистый литий, хлористый цинк и мочевина. Вместе с тем хлопок растворим в медноаммиачном растворе, в водных растворах комплексов этилендиамина с двухвалентной медью (куоксен) (т. 4, стр. 93) или кадмием (кадоксен) и тому подобных реагентах. Хлопок химически устойчив к действию водных растворов щелочей [если не считать того, что небольшое число концевых групп с восстановительными свойствами под действием щелочи превращается по довольно сложному механизму в карбоксильные группы (т. 4, стр. 42)]. Однако растворы едкого натра с концентрацией 5 М и выше вызывают изменения в морфологической структуре хлопкового волокна (приплюснутое и извитое волокно выпрямляется и. становится более круглым, а полый внутренний канал почти исчезает) и в его кристаллической структуре (превращение целлюлозы I в целлюлозу II). Этот процесс, получивший название мерсеризация , имеет важное практическое значение, так как он сопровождается повыщением разрывной прочности, блеска и накра-шиваемости хлопка. Аналогичные изменения (за исключением того, что целлюлоза I переходит не в целлюлозу II, а в другую структурную модификацию) происходят при кратковременной обработке хлопка безводным жидким аммиаком, в котором хлопок очень легко набухает ( прогрейд-процесс ). [c.303]

    Медноаммиачные соединения (лазуревая вода). Открытие высоких фунгисидных свойств бордосской жидкости стимулировало изыскание других медных препаратов, [c.190]

    Интенсивный процесс деструкции протекает и при действии на монокарбоксилцеллюлозу разбавленных растворов щелочей и других оснований при нормальной температуре. Этим объясняются низкие значения СП таких препаратов, получаемые путем вискозиметрических определений в медноаммиачном растворе. Как показали Роговин, Кондрашук и Малахов 2 , вязкость разбавленных медноаммиачных растворов препаратов хлопковой целлюлозы с СП 400—2500 после введения путем окисления двуокисью азота 2—4% карбоксильных групп (и, соответственно, некоторого количества оксикетонных групп) резко снижается. Степень полимеризации препаратов монокарбоксилцеллюлозы, определенная на основании вискозиметрических измерений в медноаммиачном растворе, составляет 80—100 Однако эти величины не отвечают действительной степени полимеризации монокарбоксилцеллюлозы, так как механические свойства хлопчатобумажных тканей после окисления двуокисью азота не только не снижаются, но даже несколько повышаются. [c.211]

    Понижение механических свойств волокна в результате окисления наблюдается не во всех случаях. Так, хлопчатобумажная ткань после частичного окисления ее двуокисью азота полностью сохраняет прочность и удлинение, в то время как степень полимеризации целлюлозы, определенная на основании вискозиметрических измерений в медноаммиачном растворе, по данным Роговина, Кондрашук и Малахова резко понижается  [c.241]

    В отличие от растворов других эфиров целлюлозы в неполярных растворителях, а также от медноаммиачных растворов целлюлозы, растворы ксантогената целлюлозы в разбавленных растворах щелочи неустойчивы. При их выдерживании происходит постепенное омыление ксантогената целлюлозы, что приводит к непрерывному понижению степени его этерификации. Соответственно изменяются и физико-химические свойства раствора, в частности вязкость и устойчивость к действию электролитов. Комплекс химических и [c.294]

    В мальтозе редуцирующий глюкозный остаток, так же как в целлобиозе, имеет конформацию С1, о чем, в частности, свидетельствовало быстрое окисление бромом. Нередуцирующий остаток при наличии а-1,4-гликозидной связи не мог быть в конформации С1, поскольку а-полуацетальный гидроксил находится в аксиальном положении, а ОН у С4— в экваториальном. На основании ряда фактов, полученных при изучении скорости гидролиза мальтозы, скорости периодатного окисления метил-Р-мальтозида в сравнении с таковым некоторых других гликозидов, изучения поведения медноаммиачных комплексов и действия щелочей было показано [37, 381, что нередуцирующий глюкозный остаток в молекуле мальтозы— это скошенная конформация, промежуточная при переходе от В1 к ЗВ. Именно эта конформация подтверждается всеми свойствами мальтозы (рис. 15). [c.20]


Смотреть страницы где упоминается термин Медноаммиачный свойства: [c.408]    [c.43]    [c.223]    [c.217]    [c.440]    [c.298]    [c.298]   
Химия целлюлозы (1972) -- [ c.147 ]




ПОИСК





Смотрите так же термины и статьи:

Медноаммиачное волокно свойства

Медноаммиачное волокно состав и свойства прядильного

Медноаммиачные растворы свойства

Свойства медноаммиачных растворов целлюлозы



© 2025 chem21.info Реклама на сайте