Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрон пространственное расположени

Рис. 1.3Я. Пространственное расположение гибридных электронных облаков атома углерода. Рис. 1.3Я. <a href="/info/149743">Пространственное расположение</a> <a href="/info/7134">гибридных электронных облаков</a> атома углерода.

    Каково пространственное расположение вокруг центрального атома двух, трех, четырех, пяти и щести электронных пар При ответе используйте данные таблицы 10. [c.73]

    Из этого затруднительного положения можно выйти, предположив, что атомы кислорода обобществляют две пары электронов (мы не рассматриваем здесь пространственного расположения образующихся связей)  [c.467]

    Аналогия с механизмом 5, 2 налагает определенные требования на пространственное расположение реакционных центров при 1,2-перегруппировках насыщенных углеводородов, причем кинетика и механизм перегруппировок цикланов оказываются тесно связанными конформационными особенностями молекул. Существует два типа влияний, оказываемых конформацией на направление и скорость реакций. Первое из них обусловлено доступностью реакционного центра (стерические факторы) и не нуждается в особых пояснениях. Более сложным является второе, связанное со специфическим пространственным расположением образующихся и разрушающихся связей (стерео-электронные требования) [34]. [c.163]

    Современные методы исследования позволяют увидеть атомы, молекулы, измерить их массу, оценить их размеры и форму, т. е. экспериментально определить пространственное расположение в веществе атомных ядер. Экспериментально установить положение электронов невозможно. Согласно квантовомеханическим представлениям можно говорить о вероятности их нахождения в той или иной области поля атомных ядер. Выяснить, как распределяется электронная плотность в молекуле, кристалле, и означает описать химическую связь в веществе. [c.41]

    Последующий этап в. исследованиях каталитических иро-цессов связан с выяснением структуры кристаллов, пространственного расположения и энергетического состояния электронов, ионов и атомных групп, а также с установлением тех. факторов, которые оказывают влияние иа подвижность этих, частиц внутри решетки и по границам фаз. [c.5]

    Более ясное представление об электронном строении комплексных соединений можно получить, лишь уяснив себе пространственное расположение пяти -орбиталей центрального ато- [c.131]

    Н. Сиджвиком и Г. Пауэллом, а в 1957 г. усовершенствован Р. Гиллеспи и Р. Найхолмом. Развитый ими подход получил название метода отталкивания валентных электронных нар (ОВЭП) его суть сводится к утверждению, что связывающие электронные пары и неподеленные электронные пары каждого атома в молекуле должны принимать пространственное расположение, которое минимизирует отталкивание всех электронных пар, окружающих данный атом. [c.491]

    Теория кристаллического поля основана на представлении об электростатической природе взаимодействия между центральным ионом и лигандами. Однако, в отличие от простой ионной теории, здесь учитывается различное пространственное расположение -орбиталей и связанное с этим различное изменение энергии -электронов центрального атома, вызываемое их отталкиванием от электронных облаков лигандов. [c.357]


    До сих пор мы рассматривали электронные спектры молекул, образующиеся в результате квантовых переходов электронов молекулы. При этом пространственные расположения ядер (или атомных остатков) считались неизменными. В действительности же в газовой и жидкой фазах молекула имеет вращательные степени свободы, т. е. может менять свою ориентацию в пространстве, а также колебательные степени свободы, допускающие изменения расстояний между ядрами. Вращения и колебания молекулы подчиняются законам квантовой механики. [c.142]

    Здесь верхний индекс у символа s указывает на то, что орбиталь 2s заселена двумя электронами. Если не отражать пространственного расположения орбиталей в атоме азота, то паспорт внешнего электронного слоя можно изобразить так  [c.208]

    Теория кристаллического поля. Эта теория рассматривает воздействие лигандов на д -орбитали иона-комплексообразователя. Форма и пространственное расположение -орбиталей представлены на рис. 18. В свободном атоме или ионе энергии всех -электронов, принадлежащих к одной и той же электронной оболочке, одинаковы — эти электроны занимают один энергетический уровень. Лиганды, присоединенные к положительному иону, являются или отрицательными [c.221]

    В то время как теория валентных связей сохраняет за атомами, входящими в состав молекулы, их индивидуальность, теория молекулярных орбиталей рассматривает молекулу как единую частицу с помощью основных идей строения атома. Так же как в атоме есть атомные орбитали, так и в молекуле есть молекулярные орбитали различие в том, что молекулярные орбитали многоцентровые. Тем не менее теория молекулярных орбиталей предлагает для электрона в молекуле волновую функцию, подобную волновой функции электрона в атоме. Так, вероятность нахождения электрона в определенной части объема будет пропорциональна и так же, как в атоме, каждая молекулярная орбиталь будет зависеть от ряда квантовых чисел, которые определяют ее энергию и пространственное расположение. Допускается также, что принцип заполнения орбиталей в молекуле такой же, как в атоме, т. е. на каждой молекулярной орбитали могут располагаться два электрона с противоположными спинами, и, начиная с орбиталей самого низкого уровня энергии, электроны один за другим заполняют следующие орбитали. [c.144]

    Эта структура требует для образования гибридной связи только 25- и одну из 2р-орбиталей. В этом случае по два р-электрона у каждого атома углерода не участвуют в образовании о-связей. Расчет пространственного расположения и относительной прочности двух равноценных 5р-гибридных связей согласуется с определенной на опыте структурой молекулы. Обе связи одинаковой прочности и расположены линейно. Характер тройной ацетиленовой связи обусловлен перекрыванием двух р-орбиталей, оставшихся у каждого атома углерода (рис. 5-15). [c.174]

    Дефекты кристаллической решетки — это нарушения периодичности строения кристалла, т. е. нарушение периодичности пространственного расположения атомов в зоне дефекта. Эти дефекты на электронно-микроскопическом изображении видны в результате явления дифракционного контраста. Различная дифракция электронов ка дефектном и недефектном участках кристалла (более сильная или менее сильная) приводит к разной освещенности соответствующих его зон и, как следствие этого, к появлению контраста. Характер контраста зависит не только от природы дефек- [c.156]

    Выяснение общей структуры молекул с пространственным расположением атомов в молекуле (расстояния, углы) из распределения электронной плотности [c.407]

    Уникальными возможностями обладает метод нейтронографии, успешно применяемый для исследования твердых тел и жидкостей, веществ с близкими и достаточно далекими атомными номерами, а также соединений, содержащих изотопы одного и того же вещества. По угловому распределению интенсивности рассеяния медленных нейтронов впервые удалось определить пространственное расположение атомов водорода и длины водородных связей в обычной и тяжелой воде, обнаружить наличие ближайшего ориентационного порядка, существующего в этих жидкостях наряду с ближним координационным порядком. Опыты по неупругому рассеянию медленных нейтронов продемонстрировали коллективный характер теплового движения атомов и молекул в жидкостях, подтвердили теоретические предсказания Л. Д. Ландау о существовании в жидком гелии квазичастиц двух типов фононов и ротонов. В настоящее время эти дифракционные методы являются составной частью физики твердого тела, физического материаловедения, молекулярной физики, биофизики и биологии. Они взаимно дополняют друг друга, имеют свою специфику, преимущества и ограничения, связанные с различием физических свойств рентгеновского излучения, электронов и нейтронов. На современном этапе при проведении структурных исследований используется новейшая аппаратура и вычислительная техника. Помимо навыков работы с ними от специалиста требуется знание теории рассеяния, основ статистической и атомной физики, природы сил взаимодействия атомов и молекул. [c.6]


    Таким образом, сопоставляя числовые значения положения и площади первого максимума кривой распределения со значениями, вычисленными по предлагаемым моделям, можно судить о пространственном расположении атомов в исследуемом бинарном сплаве. Однако удовлетворительное совпадение теоретических кривых распределения с экспериментальными не всегда достигается. В некоторых случаях результаты исследования структуры бинарных сплавов могут оказаться неоднозначными, поскольку на основании одной экспериментальной кривой интенсивности /(5) двухкомпонентного расплава получается лишь средняя функция атомного распределения р (Я). Нас же интересуют парциальные функции 0ц(7 ), Q22 R), Qi2 R) и Q2l R), описывающие структуру расплавов. В принципе они могут быть определены путем проведения трех независимых дифракционных экспериментов. В одном эксперименте используется дифракция рентгеновских лучей, в другом — дифракция нейтронов, в третьем — дифракция электронов (или нейтронов, если один из компонентов обогащен его изотопом). В разных излучениях атомные амплитуды рассеяния / 1(5) и а(5) неодинаковы, отличаются друг от друга и экспериментальные кривые интенсивности /(5). С их помощью могут быть рассчитаны парциальные структурные факторы а (8), Фурье-анализ которых дает искомые парциальные функции распределения д ij(R). [c.87]

    В ряде случаев возможен переход 5- и р-электронов на -орбитали и возникновение различного типа зр -гибридизированных орбиталей. Количество гибридизированных орбиталей определяет число атомов другого сорта в молекуле, а их " пространственное расположение — углы между связями. [c.230]

    Рассмотрим молекулу бутадиена СН2 = СН—СН = СНг, в углеродном скелете которого попеременно чередуются простая и двойная связь. Во всех последующих рассуждениях связи С—Н не будут рассматриваться. Основной скелет молекулы бутадиена (XI) можно изобразить схемой XII, в которой каждый атом углерода связан с соседними группами а-связями, образованными за счет перекрывания атомных хр -орбиталей. У каждого атома углерода остается одна свободная р-орбиталь, содержащая один электрон. Для образования двух двойных связей в обычном представлении должны перекрываться р-орбитали атомов углерода в положениях I и 2 (С-1 и С-2) и аналогичным образом — р-орбитали атомов углерода в положениях 3 и 4 (С-3 и С-4). Однако р-орбиталь С-2 оказывается в равной степени близка к р-орбиталям как С-1, так и С-3 и взаимодействие может осуществляться в обоих направлениях. В результате такого пространственного расположения наблюдается взаимодей- [c.20]

    Современные методы исследования позволяют экспериментально определить пространственное расположение в веществе атомных ядер. Как указывалось выше, согласно квантовомеханическим представ-ленилм можно говорить лишь о вероятности нахождения электронов II поле атомных ядер. Данному пространственному размещению атомных ядер отвечает определенное распределение электронной плотности. Выяснить, как распределяется электронная плотность, по сути дела, и означает описать химическую связь в веществе, но для. этого, как известно, необходимо точное решение уравнения Шредингера, что осуществлено только для иона Иг, состоящего из двух протонов и одного электрона. [c.41]

    Пространственная конфигурация молекул и комплексов. Характер ги-бридишции валентных орбиталей центрального атома и их пространственное расположение определяют пространственную конфигурацию 1юлекул и комплексных ионов. Так, при комбинации одной 5- и одной р-орбитали возникают две р-гибридные орбитали, расположенные симметрично под углом 180° (рис. 48). Отсюда и связи, образуемые с участием электронов этих орбиталей, также располагаются юд углом 180°. Например, у атома бериллия ер-гибридизация орбитллей проявляется в молекуле ВеСЬ, которая вследствие этого имеет линейную форму  [c.73]

    Для объяснения отличия валентных углов в молекулах НзО и ЫНз от 90° следует принять во внимание, что устойчивому состоянию молекулы отвечает такая ее геометрическая структура и такое пространственное расположение электронных облаков внеп, -ннх оболочек атомов, которым отвечает наименьпшя потенциальная энергия молекулы. Это приводит к тому, что при образовании молекулы формы и взаимное расположение атомных электронных облаков изменяются по сравнению с их формами и взаимным расположением в свободных атомах. В результате достигается более полное перекрывание валентных электронных облаков и, следовательно, образование более прочных ковалентных связей. В рамках метода валентных связей такая перестройка электронной [c.135]

    Возбуждение электрона со связывающей я-орбитали на разрыхляющую я -орбиталь молекулы С2Н4 обусловливает полосу поглощения с максимумом при 171 нм (58 500 см ). Этот л -> п -переход разрешен, потому что значение приблизительно равно Ненасыщенные углеводороды типа этилена поглощают свет при больших длинах волн (меньших энергиях), чем насыщенные углеводороды. Например, насыщенный углеводород этан не обнаруживает сильного поглощения до 160 нм. Это означает, что в углеводородах разность энергий у а-связывающих и а -разрых-ляющих орбиталей больше, чем разность энергий между я-связывающей и я -разрыхляющей орбиталями. По данной причине принято не обращать внимание на ст -уровни ненасыщенных углеводородов, рассматривая только их я- и я -уровни. На рис. 13-39 показаны пространственное расположение и относительные энергии я- и я -орбиталей молекулы С2Н4. [c.593]

    Теория кристаллического поля. Эта теория рассматривает воздействие лигандов на -орбитали иона-комплексообразователя. Форма и пространственное расположение -орбиталей представлены ранее на рис. 1.7. В свободном атоме или ионе энергии всех -электронов, принадлежащих к одной и той же электронной оболочке, одинаковы — эти электроны занимают один энергетический уровень. Лиганды, присоединяемые к положительному иону-комплексообразователю, могут быть нли отрицательными ионами, или полярными молекулами, которые обращены к комплексообразователю своим отрицательным концом. Между электронными облаками -электронов и отрицательными лигана,ами действуют силы отталкивания, приводящие к увеличению энергий -электронов, Однако воздействие лигандов па различные -орбитали неодинаково. Энергия электронов иа -орбиталях, расположенных близко к лигандам, возрастает больше, а на -орбиталях, удаленных от лнгаилов, меньше в результате под действием лигандов происходит расщепление энергетических уровней ё-орбиталей. [c.122]

    Отпет. Лтомы объединяются в молекулы данного состава, если при этом достигается энергетически более вьподное состояние, чем системы с изолированными атомами. Молекула имеет определенное строение, так как именно такое пространственное расположение атомов отвечает наименьшей энергии системы химически связанных атомов. Выделение энергии при образовании из атомов молекул определяется тем, что электростатическое взаимодействие ядер и электронов, связанных н молекулы, оказывается сильнее, чем в системе изолированных атомов. [c.62]

    Атомные орбитали. Как и /-орбитали, р-орбитали не обладают сферической симметрией. Электрон на р-орбитали (/=1) находится предпочтительно в одной нз двух областей, расположенных по разные стороны от ядра. При движении р-электрона создается пространственное расположение электронного облака, по форме похожее на гантель. Ось этой гантели можно расположить вдоль одной из трех взаимно перпендикулярных осей декартовых координат. р-Орбиталей три, причем ось каждой из них перпендикулярна двум другим. Их обычно обозначают рх-,р,1-, рг-орбитали, что подчеркивает их пространственный характер. В р -орбитали электрон с большей вероятностью находится вблизи оси х, чем где-либо еще. С другой стороны, Ру- и рг орбитали сконцентрированы вдоль осей у и. г (рис. 3.11). Каждая полугантель отмечается знаком + или —, показывающим перемену алгебраического знака электронной волны (волновой функции) при переходе через узловую плоскость. Вероятность нахождения электрона (Ч ), т. е. электронная плотность, по обе стороны от узловой плоскости одинакова. [c.61]

    В последние десятилетия наблюдалось бурное развитие рентгеноструктурного анализа (в первую очередь с использованием монокристаллов), а также других дифракционных методов исследования. Это обусловлено рядом причин. Одной из них явилось кардинальное усовершенствование рентгеновской аппаратуры, включая разработку ряда типов дифрактометров, управляемых ЭВМ, для съемки монокристаллов, внедрение новых способов регистрации рентгеновского излучения, использование монохроматоров. В результате точность экспериментальных данных резко возросла и появилась возможность решения принципиально новых задач (локализация легких атомов, определение деталей распределения электронной плотности на базе совместных данных нейтронографического и рентгеновского методов). Не менее важным обстоятельством явилась разработка комплексов программ обработки результатов измерений и определения структуры кристаллов, зачастую с недостаточно охарактеризованным химическим составом. Этой области применения рентгеноструктурного ана 1иза в химии посвящено несколько прекрасных монографий и учебников, и структурные разделы почти обязательно включаются в работы по синтезу новых соединений, так как дают непосредственные данные о пространственном расположении атомов в кристаллах а иногда являются и удобным способом определения химического состава, в особенности если известен качественный состав. [c.3]

    Копланарное расположение отдельных я-электронных систем является предпосылкой их сопряжения. Стерические препятствия приводят к нарушению эффекта сопряжения. Таким образом, по электронному спектру можно определить пространственное расположение отдельных частей молекулы. Так, димезитил поглощает почти при такой же частоте, что и мезитилен, но с вдвое большей интенсивностью, так как вследствие наличия объемистых СНз-групп оба бензольных кольца в молекуле последнего расположены взаимно перпендикулярно. [c.233]

    Элеиент Электронная конфигурация Группи- ровка Тип гибри- дизации валент- ных орби- талей Пространственное расположение гибридных орбиталей [c.20]

    Разные энергии термов обусловлены различиями в электростатическом отталкивании между электронами. Это объясняется тем, что разные термы соответствуют различным волновым функциям с разным пространственным расположением электронной плотности. [c.11]

    В качестве примера рассмотрим структуры молекул HjO и NHa. Молекула воды образова 1а атомом кислорода и двумя атомами водорода. У атома кислорода два неспаренных р-электрона, которые занимают две орбитали, расположенные под углом 90 друг к другу. У атомов водорода по одному s-электрону. Если электрон атома водорода обладает спином, направленным противоположно спину одного из неспаренных р-электронов атома кислорода, то при сближе-нии этих атомов образуется общая электронная пара, связывающая атомы О и Н. Если бы пространственное расположение орбиталей после образования связи не изменилось, то угол между связями был бы 90° или близок к нему. Однако известно, что угол в молекуле HjO равен 104,5° (рис. 5). Это объясняется тем, что связи О—Н сильно полярны (вследствие большой разницы электроотрицательностей этих элементов), электроны сильно оттянуты к атому кислорода, в результате чего остовы атомов водорода приобретают некоторый положительный заряд и взаимно отталкиваются при этом угол между связями увеличивается. У аналогов кислорода — серы, селена, и теллура — электроотрицательность меньше, поэтому углы между связями в молекулах HaS, HjSe, НаТе равны соответственно 92, 91, 89°. [c.27]

    Таким образом, валентные возможности атомов определяются числом валентных орбиталей зтим объясняется насыщаемость химической связи. Пространственная же конфигурация молекул и комплексных ионов находится в прямой зависимости от пространственного расположения а -связей и несвязывающих электронных иар центрального атома (табл. 4). [c.36]

    Энергию в основном от электрических источников получают электроны. Из-за большого различия их масс и масс ионов они плохо передают энергию ионам, В результате 7 злектронов Т иопов Т атомов ( э и а) ТаК, В ГаЗО-разрядных трубках Гэ составляет десятки тысяч градусов, а Та и T a — лишь одну — две тысячи. В дуговом разряде из-за большого числа частиц в единице объема столкновения происходят чаще, и Т ближе к и Га. Примерно при той же Тэ величины Г,, и Га достигают 6000 °С. Для плазмы в целом характерна электронейтральность. В то же время в малых объемах электронейтральность ие имеет места. Пространственное расположение зарядов, как п в случае электролитов, определяется ближним порядком. Как и в теории сильных электролитов, в плазме целесообразно ввести понятия радиуса ионной атмосферы (де-баевский радиус). [c.677]

    Оба эти соотношения отражают тот очевидный факт, что вероятность нахождения электрона во всем околоядерном пространстве атома равна единице, т. е. в результате проявления волновых свойств электрон не исче зает, он только размазывается в виде волны по этому пространству. Причем в силу особенностей стоячих волн их плотность , т. е. фМо, на узловых участках равна нулю, а в областях пучностей становится максимальной. Таким образом, вместо строго определенной электронной орбиты наблюдается электронное облако, состоящее из сгущений и разряжений, определяющих понятие орбитали. Форма, размеры и пространственное расположение облака или орбитали определяют сомножителями и Ф 0 уравнении (18.19), которые задают чис- [c.207]


Смотреть страницы где упоминается термин Электрон пространственное расположени: [c.70]    [c.253]    [c.47]    [c.12]    [c.179]    [c.179]    [c.64]    [c.62]    [c.206]    [c.257]    [c.453]    [c.472]    [c.208]    [c.252]   
Теоретическая неорганическая химия (1969) -- [ c.206 ]

Теоретическая неорганическая химия (1971) -- [ c.198 ]

Теоретическая неорганическая химия (1969) -- [ c.206 ]

Теоретическая неорганическая химия (1971) -- [ c.198 ]




ПОИСК







© 2025 chem21.info Реклама на сайте