Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура градиент в слое катализатор

    Простейшим является реактор с неподвижным слоем катализатора. Он представляет собой большой, герметично закрытый цилиндр, у дна которого имеется решетка, поддерживающая слой катализатора (рис. 1). В таком реакторе трудно равномерно распределить поток газов и избежать градиентов температур по слою катализатора, а также предотвратить разложение реагентов на перегретых его участках или снижение скорости реакции на недостаточно нагретых участках. Распределение потока газов по слою катализатора можно улучшить, поместив в реактор перегородки. Однако при этом возрастает сопротивление потоку газа, и превращение реагентов на более холодном пристенном слое катализатора остается неполным. [c.111]


    Дегидрирование сопровождается интенсивным поглощением тепла, и чтобы обеспечить нормальное течение реакции, исходные вещества нагревают перед подачей в адиабатический реактор с неподвижным слоем. В результате температура в слое катализатора падает в направлении движения потока сырья. С целью снижения градиента температуры и давления используют тонкий и широкий слой катализатора. [c.67]

    ПО времени контакта). Аппаратурное оформление проточного метода довольно просто, но при его использовании массе- и теплоперенос могут исказить экспериментальные данные или затруднить их обработку. Это связано с появлением градиентов температур по сечению слоя катализатора, возрастающего с уменьшением размера гранул и увеличением диаметра слоя (из-за ухудшения условий теплопередачи) температуры вдоль слоя катализатора вследствие выделения или поглощения тепла при протекании реакции скоростей потока по сечению слоя катализатора (при этом измеряемая средняя скорость потока может сильно отличаться от фактической скорости прохождения газа вблизи стенок трубки реактора) концентраций вдоль слоя катализатора, что приводит к продольному смешению реагентов. [c.18]

    Градиент температур вдоль слоя катализатора вследствие изменения степени превращения, возникающий тогда, когда тепловой эффект реакции достаточно велик и не приняты специальные меры для отвода тепла. Для устранения такого градиента желательно увеличение скорости потока, уменьшение слоя катализатора, разбавление катализатора и исходной смеси инертными веществами. В работе [526] проводилось 10-кратное разбавление железного катализатора инертной медной насадкой. Такие градиенты менее вероятны (хотя и возможны) в циркуляционной системе, при больших скоростях циркуляции. [c.524]

    Градиенты температур вдоль слоя катализатора и по его сечению. Эти градиенты практически не возникают благодаря интенсивному перемешиванию реакционной смеси и лишь незначительному изменению степени превращения вдоль слоя. [c.531]

    В случае резкого начального подъема температуры в слое катализатора градиент температуры между слоем и [c.31]


    При добавке разбавителя к исходной газовой смеси в случае процесса, текущего в кинетической области (необходимость соблюдения температуры зажигания ), его действие как аккумулятора тепла реакции ограничено допускаемым градиентом температуры в слое катализатора [c.403]

    Вследствие малой нагрузки на катализатор удается преодолеть экспериментальные затруднения, связанные с тепловыми эффектами реакции, и исследовать процесс в условиях, близких к изотермическим. Градиент температур в слое катализатора почти отсутствует, поскольку небольшое количество тепла, выделяющееся при импульсной подаче пробы [c.21]

    Теплота реакции процессов гидро- обессеривания остатков способствует 0,5 повышению температуры в слое ката- . лизатора в пределах от 20 до 80 °С при типовых показателях режима [38]. Температурный градиент с увеличением времени работы катализатора [c.89]

    В 2.3 отмечалось, что отклонение от модели идеального вытеснения происходит по трем различным причинам при возникновении поперечных градиентов температуры, при наличии продольной и поперечной диффузии и поперечных градиентов скорости. В 2.4 и 2.5 рассматривался первый и, несомненно, самый важный из этих факторов особенно это относится к реакторам с неподвижным слоем катализатора. При этом указывалось, что в таких реакторах необходимо также учитывать поперечную диффузию. Перейдем теперь к рассмотрению влияния продольной и поперечной диффузии, ограничившись кратким и, в основном, качественным рассмотрением вопроса. [c.59]

    Для размещения 10 м катализатора требовалось 2000 труб длиной 4,5 м. При этом вес реактора был весьма значительным сильно повышалась стоимость аппарата. Несмотря на малую толщину слоя катализатора, поперечный температурный градиент был велик и разность температур между стенкой и серединой слоя достигала 8—12 °С. При охлаждении обычной кипящей жидкостью температура хладоагента постоянна, и реакция протекает в основном в верхних слоя катализатора. Небольшое возрастание скорости газового потока вызывает увеличение тепловыделения и порчу катализатора вследствие перегрева. При нормальных условиях количество перерабатываемого газа не превышало 100 м ч на 1 м катализатора, причем скорость потока, отнесенная к пустому сечению, составляла 5—10 см сек. Производительность реактора, работавшего на 10 м катализатора, составляла 2 г углеводородов в сутки. Для повышения производительности были созданы условия, при которых теплоперенос осуществлялся не только при помощи теплопроводности через слой катализатора, но и путем конвекции. [c.346]

    Эти методы пригодны для обработки экспериментальных данных, полученных в изотермических условиях (при отсутствии градиентов, температуры по длине слоя катализатора и радиусу трубки). Проведение экспериментов в неизотермических (адиабатических, в част-, ном случае) условиях приводит к усложнению методов обработки. [c.425]

    Эта модель удовлетворительно описывает процессы в адиабатическом слое катализатора при допущениях градиенты температур внутри зерен катализатора незначительны химические процессы на внутренней поверхности зерен и диффузионные процессы внутри пористых зерен квазистационарны по отношению к процессам переноса в газовой фазе процессы межфазного тепло- и массообмена настолько интенсивны, что температура и концентрация реагента в твердой и газовой фазе неразличимы. [c.309]

    Высоту каждого слоя катализатора выбирают из расчета допустимого градиента температуры, который не должен превышать 20 °С во избежание теплового взрыва и сокращения срока службы катализатора. [c.149]

    Если предположить дополнительно, что в точке слоя катализатора с максимальным градиентом температуры 0 реализуется максимальный градиент степени превращения (х"=0), то для реакции первого порядка оценка (31) может быть улучшена  [c.40]

    Численный анализ регенерации неподвижного адиабатического слоя катализатора с помощью описанной выще модели дал следующие результаты. Выжиг кокса на зерне в лобовом участке слоя при входных температурах 450-500 °С протекает практически в кинетической области. По мере удаления от входа в регенератор градиенты распределения коксовых отложений по радиусу зерна увеличиваются. Начиная с расстояния примерно Vs от входа в регенератор, на зерне катализатора начальной закоксованности 3% (масс.) и выше реализуется режим послойного горения практически для любых концентраций кислорода х 5% (об.). Изменение распределения коксовых отложений в процессе выжига по радиусу зерна диаметром 4 мм в центре неподвижного слоя катализатора длиной 2 м при начальных условиях < = 5% (масс.), = = 500 °С-приведено на рис. 4.5. [c.85]

    На рис. 6 приведены профили фильтрационной скорости V, максимальной температуры 0, степени превращения и скорости химической реакции на катализаторе в момент установления. Рост степени неравномерности V приводит к резким градиентам 0, I и по длине слоя, сосуществованию в одном слое катализатора диффузионных и кинетических режимов каталитического процесса и, как следствие, наличию горячей и холодной зон в реакторе. Естественно, это ухудшает эффективность работы реакторов с неподвижным слоем катализатора. [c.92]


    Обозначения Т, Гщ, Го — температуры слоя, на входе в слой и начальная с, Сщ, Со — соответствующие значения концентрации реагента в газовой смеси в слое на входе и начальное ц — линейная скорость потока газовой смеси, отнесенная к полному сечению слоя W T, с) —скорость химической реакции АГа — адиабатический разогрев смеси при полной степени превращения I, L —текущая и общая длина слоя катализатора Я — эффективный коэффициент продольной теплопроводности слоя Сел — средняя объемная теплоемкость слоя катализатора Ср — средняя объемная теплоемкость реакционной смеси е — пористость слоя катализатора у = = Ср + Ссл D — эффективный коэффициент диффузии реагента в газовой смеси. Эта модель удовлетворительно описывает процессы в адиабатическом слое катализатора при таких предположениях градиенты температур внутри зерен катализатора незначительны химические процессы па внутренней поверхности зерен и диффузионные процессы внутри пористых зерен квазистационарны по отношению к процессам переноса в газовой фазе процессы межфазного тепло- и массообмена настолько интенсивны, что температура и. концентрация реагента в твердой и газовой фазе неразличимы. [c.100]

    Оптимальное периодическое управление температурой на входе адиабатического слоя катализатора. Предположим, что для описания нестационарного процесса в слое можно а) пренебречь продольным переносом тепла и вещества в газовой фазе за счет эффективной продольной теплопроводности и диффузии б) внутри пористого зерна катализатора практически отсутствуют градиенты температур в) можно не учитывать тепло- и массоемкость зерна и свободного объема слоя, так как будут рассматриваться процессы с характерными временами, гораздо большими, чем масштабы времени переходных режимов в газовой фазе теплообмен на границах слоя несуществен. Тогда в безразмерном виде математическую модель нестационарного процесса в слое можно записать так  [c.132]

    При использовании проточного метода с неподвижным слоем катализатора в реакторе обычно допускают, что движение газа в слое катализатора отвечает режиму идеального вытеснения, т. е. пренебрегают радиальными градиентами давления, температуры, концентрации. Соответственно среднюю скорость процесса по высоте слоя Н или по времени контакта т (поскольку т пропорционально Н) определяют интегрированием кинетических уравнений (VI. 1) и (VI. 3). Аналитическое решение кинетических уравнений, как правило, возможно лишь с применением вычислительных машин. При их отсутствии прибегают к графическому дифференцированию зависимости х = /(т), что вносит погрешности. [c.284]

Рис. 2.25. Зависимость градиента температуры от продолжительности реакции Д1(х) системы на импульсное возмущение т при обстукивании циклонов 1 — функция отклика пластинчато-каталитического реактора 2 — функция отклика нижней половины слоя катализатора реактора с насыпным слоем 3 — функция отклика верхней половины слоя катализатора реактора с насыпным слоем Рис. 2.25. <a href="/info/738243">Зависимость градиента</a> температуры от <a href="/info/267793">продолжительности реакции</a> Д1(х) системы на <a href="/info/817290">импульсное возмущение</a> т при <a href="/info/403822">обстукивании</a> циклонов 1 — <a href="/info/51139">функция отклика</a> пластинчато-<a href="/info/66385">каталитического реактора</a> 2 — <a href="/info/51139">функция отклика</a> нижней половины <a href="/info/956949">слоя катализатора реактора</a> с <a href="/info/748332">насыпным слоем</a> 3 — <a href="/info/51139">функция отклика</a> верхней половины <a href="/info/956949">слоя катализатора реактора</a> с насыпным слоем
    В. приведенных выше расчетах реакторов не были учтены некоторые факторы, существенно усложняющие расчеты. Например, к ним относятся такие факторы, как изменение объема потока в связи с изменением температуры реакции и гидравлическим сопротивлением слоя катализатора или вследствие протекания химической реакции, возникновение радиальных градиентов температуры в слое катализатора и т. п. Далее, выражение скорости реакции формальными уравнениями с эффективными коэффициентами хорошо оправды- [c.288]

    Явление значительного радиального градиента температур в слое катализатора при сочетании с более высокими абсолютными температурами слоев приводило к пиковым температурам, приближающимся к максимальным эксплуатационным пределам реактора. Чтобы не допускать превышения этого температурного предела, необходимо было или уменьшать производительность установки или снижать конверсию по реактору. Усовершенствование контактно-распределительных устройств, в том числе и распределителей холодного водорода позволило значительно улучшить перемешивание и снизить радиальный температурный перепад и тем самым избежать сокращения производигельности установки в середине реакционного цикла и повысить выход жидких нефтепродуктов на 3-5 / . [c.141]

    Некоторые из этих различий могут возникать в результате градиента температур в слое катализатора при сильно экзотермичной реакции, что, как известно, может оказывать влияние на наблюдаемую кинетику процесса. Однако более серьезным затруднением нри изучении этой системы является присутствие при некоторых условиях жидкой фазы в порах инертного носителя катализатора. Давно известно, что УаОа—КдО-катализатор, в котором калий служит промотором, может удерживать серный ангидрид, образуя расплав ванадия в пиросульфате калия КаЗаО каталитическая активность таких расплавов была исследована Топсе и Нильсеном в 1947 г. [15]. [c.429]

Рис. УП1-19. Радиальные и продольные градиенты температуры и концентрации в слое катализатора Фишера—Тропша при 200 °С в реакторе вытеснения [по шкале О—15 отложены (в °С) приращения температуры в слое по сравнению с начальной температурой по шкале О—4 отложены (в м) расстояния по оси слоя по шкале О—10 отложены (в мм) расстояния по радиусу слоя]1 2. Рис. УП1-19. Радиальные и <a href="/info/642060">продольные градиенты температуры</a> и концентрации в слое <a href="/info/311176">катализатора Фишера—Тропша</a> при 200 °С в <a href="/info/3451">реакторе вытеснения</a> [по шкале О—15 отложены (в °С) приращения температуры в слое по сравнению с <a href="/info/25846">начальной температурой</a> по шкале О—4 отложены (в м) расстояния по оси слоя по шкале О—10 отложены (в мм) расстояния по радиусу слоя]1 2.
    Как уже отмечалось, поперечную диффузию, обусловленную наличием насадки, следует учитывать в связи с поперечными градиентами температур. Необходимость учета продольной диффузии при расчете реакторов существенно зависит от соотношения его длины и размера зерен. Если это отношение равно или больше 100, что обычно имеет место на практике, то влиянием продольной диффузии можно пренебречьОднако в тонких слоях эффект может оказаться значительным [9, стр. 95]. К числу реакторов вытеснения с исключительно тонкими (в указанном смысле этого слова) слоями катализатора относится аппарат, применяемый для окисления аммиака. В нем реагирующий газ проходит всего через три или четыре слоя платиново-родиевой сетки, используемой в качестве катализатора. Если бы не влияние продольной диффузии, то для 100%-ного окисления аммиака хватило бы и меньшего числа таких сеток. [c.64]

    Из давно применяющихся методов здесь следует упомянуть методы Хэлла и Смита а также Ирвина, Олсона и Смита , опубликованные в 1949 и 1951 гг. Описываемые методы ставили своей задачей определение длины слоя катализатора, необходимого для получения заданной степени превращения, а также вычисление степени превращения для заданной длины слоя как функции таких параметров, как скорость потока, исходный состав вещества, температура и давление на входе реактора. Расчеты проводились для неизотермического и неадиабатического процессов. В этом случае, вследствие потока тепла через стенки реактора, возникает поперечный температурный градиент, причем разность температур в радиальном направлении может быть значительной. Необходимо иметь возможность определения температурного профиля в осевом, и радиальном направлениях. Для получения данных, необходимых для проектирования, и прежде всего скорости реакции как функции температуры, давления, состава, а также эффективного коэффициента теплопроводности, требовались соответствующие экспериментальные исследования. В настоящее время теория и эксперимент, относящиеся к проблемам теплопроводности, получили значительное развитие. До недавнего времени, однако, эти данные были довольно ненадежными, а соответствующие методы расчета еще и сегодня нельзя считать достаточно завершенными. [c.153]

    Сделан вывод о существеиной роли внешней диффузии при регенерации в промышленных аппаратах с движущимся слоем катализатора. Регенерационные характеристики промышленных катализаторов предложено оценивать при регенерации их в неподвиж ном слое при температуре 650° С и объемной скорости воздуха 200 1/ч [43, 51]. Отметим, что в алое регенерируемюго катализатора существует градиент концентраций в папра влении патока газа. [c.78]

    Динамические характеристики. Из-за внешних воздействий и (или) изменений внутренних свойств катализатора и реактора в целом температурные и концентрационные поля в слое катализатора меняются во времени. При этом, как было показано, те параметры, влияние которых в стационарном режиме можно было не учитывать, часто оказываются существенными в нестационарном процессе. К таким параметрам можно отнести, например, дисперсию вещества вдоль слоя катализатора, массоемкость и теплоемкость слоя, неравподоступность наружной поверхности зерна, внешний тепло- и массообмен. В стационарном режиме значительное число факторов воздействует на состояние системы независимо и часто аддитивно. Это позволяет использовать более узкие модели и эффективные параметры, отражающие суммарное влияние этих факторов. В нестационарном режиме степень влияния этих же факторов может быть иной и, кроме того, сильно зависеть от состояния системы. Р1х влияние необходимо учитывать порознь. Так, например, дисперсию тепла вдоль адиабатически работающего слоя катализатора в стационарном режиме вполне достаточно представить коэффициентом эффективной продольной теплопроводности. В нестационарном режиме это недопустимо — необходимо учитывать раздельно перенос тепла по скелету катализатора, теплообмен между реакционной смесью и наружной поверхностью зерна и иногда перенос тепла внутри пористого зерна. Из-за инерционных свойств в нестационарном режиме имеют место большие, чем в стационарном, градиенты температур и концентраций на зерне и в слое катализатора. Это приводит, иапример, к отсутствию пропорциональной зависимости между температурой и степенью превращения, непродолжительному, но большому перегреву у поверхности зерна с наилучшими условиями обмена, значительным перегревам слоя — динамическим забросам, на-Л1Н0Г0 превышающим стационарные перепады температур между входом и выходом из слоя могут быть в несколько раз больше адиабатического разогрева при полной степени превращения. Сдвиг по фазе между температурными и концентрационными полями иногда приводит к возникновению колебательных пере- [c.13]

    Математическое описание процессов в адиабатическом слое катализатора имеет вид (1)—г(6), если выполнены следующие-предноложения а) градиенты температур внутри зерен катализа- [c.28]

    Выжиг кокса в слое катализатора сопровождается формированием и перемещением по длине слоя температурных и концентращюнных волн. В качестве примера на рис. 4.6 показан характер регенеращ1И закоксованного слоя катализатора для следующего набора определяющих параметров х = 1,2% (об.), = 5% (масс.), з = 3,4 мм, время контакта (отношение объема реактора к объемной скорости подачи газового потока) Хк = 14 с (взяты из работы [162]), Tq = 480 °С. Как видно, в процессе выжига происходит формирование в слое катализатора характерного температурного профиля, который в дальнейшем перемещается в направлении движения газового потока. Качественно аналогичный результат получен и авторами работы [162]. Однако для данных условий не было обнаружено существование стационарного (перемещающегося без изменения температурного градиента) фронта горения в течение длительного времени. Это связано с тем, что в расчетах учтена осевая теплопроводность по слою катализатора, способствующая разукрупнению крутых температурных градиентов. Одновременно с движением температурного фронта происходит характерное изменение распределения по длине слоя средней относительной закоксованности. При этом в лобовом участке слоя из-за сравнительно низких температур скорость удаления кокса меньше, чем на последующих участках. Интересен следующий результат чем больше объемная скорость подачи (меньше время контакта), тем относительно больше кокса остается невыгоревшим [c.86]

    Математические модели нестационарных процессов в реакторе. Легко подсчитать, что количество возможных моделей процессов в неподвижном слое катализатора равно нескольким сотням. Однако используя приведенные выше неравенства, выделяющие основные факторы и определяющие поведение темперйтурных и концентрационных полей в реакторе, легко построить узкую существенную модель процесса в целом. Так, для процесса окисления SO2 в SO3 в реакторе с адиабатическими слоями катализатора нестационарный процесс в первом слое должен описываться моделью, учитывающей градиенты температур и концентраций внутри зерна катализатора, в последующих слоях процесс в зерне достаточно представить моделью идеального перемешивания по теплу стационарные режимы во всех слоях удовлетворительно описываются моделью идеального вытеснения стационарный режим для процесса синтеза винилхлорида в трубчатом реакторе описывается квазиго-могенной моделью, учитывающей перепады температур по радиусу трубки, а для описания нестационарных процессов в реакторе не обходимо учитывать и перепады температур внутри зерна. [c.73]

    Пусть в момент времени / = О входная температура скачкообразно уменьшилась до величины 6о = — 7,5 и далее при любом I оставалась неизменной. Предполагается, что величина скорости химического превращения при этой температуре пренебрежимо мала. На рисунке видно, что с течением времени максимальная температура реакционной смеси в слое не только не уменьшилась, но даже увеличилась, приблизившись к некоторому пределу бщ . Температурный градиент в формирующемся фронте выше стационарного, а при 4 4 он остается практически неизменным. Фронт сформировался. Теперь по слою катализатора с неизменной скоростью перемещается тепловая 0( , 1) и концентрационная 4) волны (фронты), которые в системе координат г = Г—ш1 остаются неизменными (здесь I — длина слоя катализатора, м — скорость движения фронта). Тепловой фронт гетерогенной химической экзотермической реакции, как показано ниже, обладает рядом чрезвычайно интересных свойств. Среди них, например, такое разность между максимальной температурой во фронте От и входной температурой реакционной смеси Во может быть во много раз больше величины ДЭадЛ р (бтах), где Хр (0тах) — равновесная степень превращения при максимальной температуре во фронте. [c.79]

    Математическое описание процессов в адиабатическом слое катализатора имеет вид (3.26) — (3.31), если выполнены следующие предноложения а) градиенты температур внутри зерен катализатора незначительны б) химические процессы на внутренней поверхности зерен катализатора и диффузионные процессы внутри пористого зерна катализатора квазистационарны по отношению к процессам переноса в газовой фазе в) в реакторе протекает одна экзотермическая реакция типа А В без изменения объема. [c.81]

    Перепад температуры по радиусу зерна определяется как интенсивностью теплопереноса внутри зерна, так и интвнсжвностыо отвода тепла, выделяющегося в зерне. Наличие теплопереноса по скелету слоя обеспечивает отвод тепла к соседним участкам зернистого слоя катализатора. Это увеличивает дисперсию тепла по слою возрастает ширина зоны реакции, как следствие, уменьшается максимальная температура во фронте (рис. 3.5). При этом уменьшаются и температурные градиенты по слою и по радиусу зерна катализатора. С ростом интенсивности теплопереноса по слою влияние внутреннего переноса тепла в зерне па температуру фронта уменьшается. Численный анализ позволил также сделать вывод [c.93]

    Влияние размеров зерен катализаторов. Первоначально изучалось влияние размеров зерен йз на характеристики стационарных режимов процесса синтеза аммиака. Расчеты выполнялись для первого слоя двухполочного аппарата со временем контакта 0,064 с. Скорость фильтрации реакционной смеси, пересчитанная на нормальные условия, 4,56 м/с. При увеличении размеров зерна катализатора с 5 до 10 мм степень превращения на выходе из первого слоя уменьшалась с 13,2 до 9,7%, что связано с уменьшением степени использования внутренней поверхности зерна катализатора, обусловленного наличием диффузионного торможения. Температурные градиенты внутри зерна в стационарном режиме невелики и в зоне максимальных температур градиентов по слою не превышают 1 (для зерна 2 мм) и 3°С (для 5 мм зерна). Для зерна катализатора размером 10 мм температурный перепад в зерне достигает 6°С в стацпонарном режи.ме. Однако перенос тепла внутри зерна не оказывает заметного влияния на характеристики стационарного процесса. Например, были выполнены расчеты стационарного режима (для зерна 2 мм) и 3°С (для зерна 5 мм). Для зерна катализатора проводности Яз = 0,5-10 ккал/(м с град). При этих значениях параметров в зерне образуется перепад температур между поверхностью и центром 6° (если зерно находится в зоне максимальных температурных градиентов по длине слоя). На выходе из первого слоя двухполочного реактора оптимальная степень превращения достигала 2 = 9,7% аммиака, а температура Г = 474°С. Для изотермического зерна катализатора выходные характеристики первого слоя составляли соответственно 2 = 9,6% и Г = 472°С. Таким образом, при расчетах стационарных режимов зерна катализатора можно считать изотермическими. [c.212]

    Сырьевая смесь может быть предварительно подогрета на 5—10° С ниже заданной температуры реакции, которая достигается уже в реакционном объеме за счет выделяющегося тепла. Однако для селективного протекания процесса и облегчения его регулировапия желательно, чтобы режим в реакторе был близок к изотермическому. Прц использовании кипящего слоя катализатора градиент температур между поступающим сырьем и реакционной зоной может быть увеличен до 50—100° С. [c.274]

    Результаты вычислений на машине. Сложность оптимизируемой функции требует псиользовапия цифровой вычислительной машины. Предварительные расчеты были получены для идеальных условий без учета суммарного перепада давлений через слой катализатора, градиента давления и температуры от окружающего потока к наружной поверхности гранул катализатора, а также в предположении, что фактор эффыстивпости равен единице. [c.452]


Смотреть страницы где упоминается термин Температура градиент в слое катализатор: [c.11]    [c.18]    [c.424]    [c.13]    [c.123]    [c.93]    [c.251]    [c.226]   
Химическая кинетика и расчеты промышленных реакторов Издание 2 (1967) -- [ c.274 ]

Химическая кинетика и расчеты промышленных реакторов Издание 2 (1967) -- [ c.274 ]

Химическая кинетика и расчеты промышленных реакторов (1964) -- [ c.287 ]

Химическая кинетика м расчеты промышленных реакторов Издание 2 (1967) -- [ c.274 ]




ПОИСК





Смотрите так же термины и статьи:

Градиент температуры

слое катализатора



© 2025 chem21.info Реклама на сайте