Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вулканизаты старение

    На основании значительного экспериментального материала установлено, что сопротивление вулканизатов старению зависит от ряда факторов, важнейшими из которых являются  [c.189]

    В книге описаны методы получения, строение и свойства натурального и синтетических каучуков, а также химические превращения последних. Рассмотрены важнейшие технологические процессы производства резины. Книга содержит сведения о свойствах вулканизатов, старении и утомлении резин. [c.231]


    Вулканизующие системы А и Б — общепринятые применяются для вулканизации. изделий, получаемых методом прессования при низких температурах вулканизации, когда не требуется высокое сопротивление резин тепловому старению. Вулканизующая система В с низким содержанием серы способствует хорошему сопротивлению тепловому старению, однако время до начала подвулканизации настолько мало, что смесь можно применять только при плунжерном литье, когда не происходит большого выделения тепла в смеси при наборе дозы в литьевую камеру. Вулканизующая система Г обеспечивает не только отличное сопротивление вулканизатов старению, но и увеличивает время до начала подвулканизации. [c.84]

    С увеличением молекулярной массы тройных сополимеров возрастает степень вулканизации, напряжение при удлинении 300%, сопротивление разрыву, эластичность по отскоку, износостойкость и снижается теплообразование и накопление остаточной деформации вулканизатов. С повышением непредельности сополимеров с близкой вязкостью по Муни возрастает их жесткость и восстанавливаемость, снижается характеристическая вязкость и пластичность вальцуемость при этом улучшается. Вулканизаты сополимеров с большей непредельностью имеют более низкие коэффициент теплового старения, морозостойкость и износостойкость (см. табл. 2) [60, 61]. [c.313]

    Физико-механические свойства вулканизатов, их стойкость к старению и воздействию агрессивных сред в значительной степени определяются типом полимера. Например, сопротивление разрыву ненаполненных вулканизатов повышается при увеличении вязкости по Муни и уменьшении непредельности бутилкаучука. Способность бутилкаучука к кристаллизации при растяжении обусловливает получение вулканизатов с высокой прочностью без применения [c.350]

    Хлоропреновый каучук получил широкое применение в СССР и за рубежом в качестве каучука общего и специального назначения. Это обусловлено его ценными свойствами — высокими физикомеханическими показателями, удовлетворительной обрабатываемостью и хорошей совместимостью с ингредиентами резиновых смесей и другими полимерами. Вулканизаты, полученные на основе хлоропреновых каучуков, обладают рядом других ценных свойств высокой прочностью в сочетании с высокой пластичностью и удовлетворительной эластичностью стойкостью к кислородному и озонному старению удовлетворительной маслобензостойкостью хорошей адгезией к многим субстратам огнестойкостью удовлетворительным сопротивлением истиранию малой газопроницаемостью. [c.368]


    Наряду с указанными соединениями весьма эффективным стабилизатором для хлоропренового каучука является дибутил-дитиокарбамат никеля (в количестве 2% от массы полимера), который повышает стойкость каучука и вулканизатов на его основе к тепловому старению и замедляет подвулканизацию резиновых смесей, превосходя в этом отношении неозон Д. Другое преимущество дибутилдитиокарбамата никеля заключается в том, что каучук, стабилизированный им, имеет повышенную стойкость к озонному старению (озоностойкость увеличивается в 20 раз) [46]. [c.382]

    Свойства вулканизата Сопротивление разрыву, МПа при 20°С при 100°С после старения в термостате в течение 72 ч при 150 °С без доступа воздуха в течение 720 ч при 200 °С после набухания [c.392]

    Вулканизаты на основе акрилатных каучуков отличаются сравнительно невысоким сопротивлением разрыву. В то же время для них характерно сохранение прочностных характеристик после теплового старения при 150°С на воздухе, в трансформаторном и серусодержащих (гипоидных) маслах, при тепловом старении в закрытом объеме при 200°С. Недостатками резин из акрилатных каучуков являются их сильная адгезия к форме, малая морозостойкость, низкая эластичность при комнатной температуре и, заметная коррозионная активность [1, 2, 19]. [c.393]

    Оптимальные свойства резин различного целевого назначения зависят как от абсолютного количества, так и от соотношения прочных и лабильных межмолекулярных связей [1]. Лабильные связи, образующиеся в процессе серной вулканизации, вследствие высокой реакционной способности снижают термическую и термоокислительную стойкость вулканизатов, являясь одной из важнейших причин их старения [2]. Введение в каучуки карбоксильных групп позволяет создавать сетку из лабильных и одновременно инертных по отношению к углеводородным цепям солевых групп, однако вследствие склонности к скорчингу, быстрого падения физико-механических показателей с ростом температуры и некоторых других недостатков, эти каучуки пока не нашли широкого промышленного применения. [c.405]

    После теплового старения при 150°С вулканизаты на основе эпихлоргидриновых каучуков характеризовались следующими свойствами  [c.582]

    Вулканизаты, полученные на основе хлоропреновых каучуков, обладают высокой прочностью в сочетании с высокой пластичностью и удовлетворительной эластичностью, стойкостью к кислородному и озонному старению, удовлетворительной маслобензостойко-стью, хорошей адгезией ко многим субстратам, огнестойкостью, удовлетворительным сопротивлением истиранию, малой газопроницаемостью. Однако невысока тепло- и морозостойкость. [c.18]

    Оптимум вулканизации определяют часто по изменению предела прочности при растяжении вулканизата. С этой целью образцы резиновой смеси вулканизуют в течение разных промежутков времени при одинаковых прочих условиях, а затем определяют предел прочности при растяжении. Минимальное время вулканизации, обеспечивающее наилучший предел прочности при растяжении, является оптимумом вулканизации. При дальнейшей вулканизации после достижения оптимума физико-механические свойства начинают ухудшаться, это явление называется перевулканизацией. В производственной практике чаще всего вулканизацию резиновых изделий прекращают несколько раньше достижения оптимума. В этом случае изделия обладают лучшим сопротивлением старению. [c.74]

    Вулканизаты каучука СКД, содержащие сажу, по эластичности близки вулканизатам натурального каучука, а по сопротивлению истиранию, тепловому старению и морозостойкости значительно превосходят их. Прочность вулканизатов СКД ниже, чем прочность вулканизатов на основе натурального каучука, но выше прочности вулканизатов из СКБ. Каучук СКД благодаря ценным техническим свойствам можно применять как самостоятельно, так и в смеси с натуральным каучуком. Наиболее целесообразно применять его в производстве шин и специальных морозостойких резиновых изделий. [c.105]

    По морозостойкости дивинил-стирольный каучук занимает промежуточное положение между каучуком СКБ и натуральным каучуком, с понижением содержания стирольных звеньев в каучуке морозостойкость его увеличивается. Саженаполнен-ные вулканизаты на основе СКС имеют хорошее сопротивление тепловому, озонному и естественному старению и хорошее сопротивление разрушению при многократных деформациях. [c.105]

    Резина из дивинил-стирольного карбоксилатного каучука СКС-30-] обладает очень хорошим сопротивлением тепловому старению и высоким сопротивлением разрастанию трещин при многократном изгибе. Вулканизаты СКС-30-1 отличаются повышенной износостойкостью . [c.109]

    По температуростойкости резины из бутилкаучука уступают резинам из других каучуков, но по сопротивлению тепловому старению превосходят их. Недостатком вулканизатов бутилкаучука является низкая эластичность по отскоку, но при 100 °С по эла- [c.109]

    Резины имеют высокую стойкость к тепловому старению при температуре 200—250 °С. После нагревания вулканизатов в течение 3- месяцев при температуре 200—250" С физико-механические свойства их изменяются мало, тогда как в этих же условиях резины из натурального и синтетических каучуков общего назначения полностью теряют свою работоспособность. [c.113]


    Разнообразные требования, предъявляемые к техническим свойствам резиновых изделий, не могут быть обеспечены применением одного каучука. Для придания каучуку способности вулканизоваться к нему необходимо прибавить серу, а также уско рители к активаторы, чтобы можно было проводить вулканизацию каучука достаточно быстро. Вулканизаты должны обладать высоким сопротивлением старению, это достигается введением в ре зиновую смесь различных противостарителей. Во многих случаях резиновые изделия должны обладать высоким пределом прочности при растяжении и высоким сопротивлением раздиру и истиранию, что обеспечивается применением активных наполнителей. Чтобы облегчить процесс смешения резиновой смеси, сообщить ей способность хорошо каландроваться и шприцеваться, применяют различные мягчители и наполнители. Для придания резине определенного цвета в ее состав вводятся красящие вещества. Кроме того, резиновые изделия часто должны обладать достаточной морозостойкостью, иногда должны быть пористыми, поэтому в резиновые смеси приходится вводить специальные добавки. [c.124]

    Ускорители вулканизации отличаются по своему влиянию на физико-механические и технические свойства вулканизатов и на ход процесса вулканизации. Выбором различных ускорителей можно влиять на скорость, оптимум, плато и температуру вулканизации, а также на сопротивление старению, теплостойкость и на физико-механические показатели вулканизатов. В настоящее время применяются неорганические и особенно органические ускорители вулканизации. [c.131]

    Технологические свойства ускорителей характеризуются следующими особенностями 1) активностью, т. е. способностью сокращать продолжительность вулканизации, необходимую для достижения наилучших физико-механических и технических свойств вулканизата 2) критической температурой действия ускорителя и влиянием на устойчивость резиновых смесей к преждевременной вулканизации 3) влиянием на плато вулканизации на величину физико-механических показателей вулканизатов и на сопротивление их старению. [c.131]

    Дибутилдитиокарбамат никеля придает вулканизатам из дивинил-стирольного каучука хорошую стойкость к световому старению. [c.136]

    Тиурам представляет собой светло-желтый порошок с плотностью 1,4 см и температурой плавления 140—142 "С. Тиурам является ультраускорителем, его критическая температура действия около 105—125 °С поэтому резиновые смеси с тиурамом обладают склонностью к подвулканизации. Применяют тиурам в дозировках от 0,1 до 0,75% от массы каучука, а при вулканизации в горячем воздухе в дозировке 0,3—0,7%. Активируется окисью цинка. Сажа, каолин и регенерат понижают активность тиурама. Вулканизаты отличаются хорошим сопротивлением старению. В дозировке 3—5% тиурам применяют в производстве теплостойких резин особой теплостойкостью отличаются резины, получаемые с тиурамом, без серы. Вулканизация при этом происходит за счет серы, отш,епляемой тиурамом. [c.137]

    Действие мягчителей весьма разнообразно. Они обеспечивают более равномерное распределение ингредиентов в резиновой смеси, уменьшают разогревание при смешении и тем предотвращают в известной мере преждевременную вулканизацию, снижают расход электроэнергии на изготовление и последующую обработку резиновых смесей, уменьшают их усадку, улучшают формование при вулканизации в формах, а также понижают температуру размягчения резиновой смеси в начале вулканизации. Мягчители оказывают влияние на вулканизацию, физико-механические свойства и старение вулканизата. [c.179]

    Сущность различных методов определения сопротивления резин старению заключается в сопоставлении физико-механических показателей вулканизата до старения с физико-механическими показателями того же вулканизата после старения. При этом одна часть образцов подвергается физико-механическим испытаниям без старения, а другая часть таких же образцов подвергается старению по одному из указанных выше методов и испытывается после старения. При пользовании методами 3 и 4 применяют образцы в виде стандартных двусторонних лопаток, предназначенных для испытания на предел прочности при растяжении, при других методах иногда применяют образцы иной формы. [c.195]

    Регенерат повышает некоторые технические свойства вулканизатов сопротивление их старению, теплостойкость и сопротивление действию горячей воды и пара, кислот и щелочей. Но в производстве резиновых изделий ответственного назначения регенерат применяют в ограниченном количестве, так как он ухудшает физико-механические показатели резин, понижает предел прочности при растяжении и сопротивление к действию многократных деформаций. В отечественно.м производстве шин потребление регенерата по отношению к потреблению каучука составляет 8—10%. Содержание регенерата в различных резиновых смесях производства резиновых технических изделий колеблется [c.368]

    Подробное изучение свойств вулканизатов ТПА свидетельствует о хорошем сопротивлении тепловому старению [5], высокой озоно- и погодостойкости [5, 37], устойчивости к УФ-бблучению [39], низкой газопроницаемости высоконаполненных резин [5, 37]. [c.325]

    Эффективный способ устранения подвулканизации смесей — экранирование поверхности частиц соединения металла защитной пленкой. Например, описан способ повышения стабильности резиновых смесей за счет использования окиси цинка, покрытой сульфидом цинка, и окиси цинка, покрытой фосфатом цинка [8]. Применение органических кислот и их ангидридов в качестве замедлителей реакции солеобразования с окисью цинка снижает подвулканизацию смесей карбоксилсодержащих каучуков и одновременно существенно улучшает свойства вулканизатов [8]. Применение в качестве вулканизующих агентов алкоголятов алюминия, магния, а также различных перекисей двухвалентных металлов (Zn02, ВаОг и др.) позволяет существенно повысить стойкость резиновых смесей к подвулканизации [7]. Особенностью карбоксилсодержащих каучуков является повышенная стойкость в процессе теплового старения, очень высокое сопротивление разрастанию трещин (больше 300 тыс. циклов) [1]. По комплексу свойств карбоксилсодержащие каучуки представляют существенный интв--рес для различных областей применения.  [c.403]

    Термическая стабильность на в о з д у х е у силоксановых вулканизатов значительно выше, чем у органических резин. Старение первых (рис. 1) [72] идет при 200—300 °С со скоростью, характерной для вторых при 100—150 °С. После 4—6 недель старения при 125°С органические резины уступают силоксановым по сопротивлению разрыву при этой температуре. В течение первых 2 недель старения при 210 °С механические свойства силоксановых резин изменяются в допустимых пределах, а затем остаются постоянными в течение 8 недель [20, с. 48—54]. Повышенной термической стабильностью при свободном старении отличаются вулканизаты гетеросилоксанов [3, с. 156] и особенно карборансилоксанов [16]. У последних сопротивление разрыву равно 1,8 МПа и относительное удлинение 87% после 24 ч старения при 427 °С. При старении в напряженном состоянии преимущества силоксановых резин перед органическими проявляются уже при 100°С в меньших величинах остаточной деформации сжатия (рис. 2) [72]. По данным [62], силоксановые резины служат при [c.492]

    Термическая стабильность в вакууме иллюстрируется малыми потерями массы силоксановой резиной за 7 сут при остаточном давлении 1,33 мПа при 100°С 1%, при 205°С 1,8% [72, с. 146]. В условиях напряженного старения в вакууме особенно устойчивы вулканизаты полисилкарбораниленсилоксана дексил 201 у наполненного время падения напряжения на 50% при 350 °С составляет около 15 ч, у ненаполненного больше 2 сут (при 450 °С около 5 ч) [73]. [c.493]

    Механические свойства силоксановых вулканизатов при 20 °С ниже, чем у органических резин. Однако их твердость и эластичность почти постоянны в широком интервале температур, а сопротивление разрыву при повышении температуры изменяется сравнительно мало и при 200—250 °С оказывается выше, чем у других резин, кроме фторуглеродпых. Механические свойства хорошо сохраняются при тепловом старении [20, с. 48—54 72, с. 133—136]. [c.494]

    Диэлектрические свойства силоксановых вулканизатов очень высоки и мало изменяются при повышении частоты до 10 Гц и даже до 10 ° Гц, а также при повышении температуры и в условиях теплового старения (при 250 С —за 10 000 ч). Они сохраняются также длительно в воде. Так, за три недели пребывания резины в воде при 20 5°С удельное объемное сопротивление снижается лишь до 10 10 Ом-см. Изоляция из силок-сановой резины при однократном пробое или действии открытого огня образует, в отличие от органической резины, непроводящую золу (SIO2), способную некоторое время предотвращать падение напряжения в сети. Введением проводящих наполнителей (газовой сажи или металлических порошков) можно получить силоксановые резины с низким электрическим сопротивлением (до 3—5 Ом-см) [72, с. 137—139]. [c.494]

    Изучены свойства опытных партий эпихлоргидринового каучука СКЭХГ-СТ, выпущенных Стерлитамакским АО Каучук . Оценена вулканизационная активность каучука и исследованы свойства вулканизатов, полученных с применением серноускорительной, аминной и пероксидной вулканизующих систем. Показано, что серно-ускорительная вулканизация обеспечивает получение вулканизатов с более высокой прочностью аминные и пероксидные вулканизаты превосходят серно-ускорительные по сопротивлению тепловому старению в свободном и напряженном состоянии. [c.174]

    Хлорметилированные смолисто-асфальтеновые вещества являются эффективными вулканизующими агентами для бессерной вулканизации каучуков [211, 212]. Нйибольщей вулканизующей активностью характеризуются вулканизаты, полученные с применением хлорметилированных асфальтитов, обладающие более высокими показателями сопротивления тепловому старению [147]- [c.355]

Рис. 18.8. Изменение сопротивления старению пероксидных вулканизатов цис-1,4-полиизопрена (натуральный каучук). в присутствии защитных добавок (0,01 моль на 1 г вулкани-зата) Рис. 18.8. <a href="/info/426602">Изменение сопротивления</a> старению пероксидных вулканизатов цис-1,4-полиизопрена (<a href="/info/540">натуральный каучук</a>). в <a href="/info/402503">присутствии защитных</a> добавок (0,01 моль на 1 г вулкани-зата)
    Изучен характер в. шяния продуктов измельчения варочных камер и вулканизационных диафрагм в широком интервале дозировок на свойства протекторных и диа-фрагменных резин соответственно. Показано, что увеличение дозировки измельченных отходов сопровождается снижением условных напряжений, условной прочности при растяжении, сопротивления раздиру вулканизатов. Корректировкой содержания вулканизующих агентов можно несколько компенсировать падения модуля и прочности, но при содержании вторичных продуктов более 20 мае. ч. этот метод не позволяет сохранить указанные свойства на нормируемом уровне. Для протекторных резин характерно снижение усталостной выносливости в режиме постоянства амплитуды дефор-ма1щи, повышение относительного гистерезиса и уменьшение истираемости. Диафраг-менные резины, содержащие продукт измельчения диафрагм, отличаются повышенной усталостной выносливостью до и после старения, по с гойкости к старению не уступают серийным резинам. После корректировки состава вулканиз>тощей группы преимущества резин с продуктами переработки сохраняются. Показателями же, более серьезно лимитирующими содержание вторичных резин, являются технологические свойства вязкость, пластичность, качество поверхности невулканизованных заготовок, прочность стыков. С учетом этих ограничений допустимое содержание продукта измельчения варочных камер в протекторных резинах составляет 5-10 мае. ч. на 100 мае. ч. каучука, а продукта измельчения диафрагм в диафрагменных резинах - до 20 мае. ч. [c.6]

    Каучук сообщает вулканизатам повышенную температуростойкость, но после продолжительного нагревания в воздушной среде (при тепловом старении) физико-механическне свойства их сильно ухудшаются. [c.104]

    Маслонаиолненные каучуки перед их применением в резиновом производстве не требуют предварительной пластикации. Вулканизаты этих каучуков обладают более низким теплообразованием при многократных деформациях ио сравнению с вулканн-затами дивинил-стирольных каучуков. В соответствии с этим шины из маслонаиолненных каучуков имеют больший пробег. Их вулканизаты равноценны по тепловому старению вулканизатам дивинил-стирольных каучуков, не содержащих масел, но превосходят последние по сопротивлению разрушению при многократных деформациях и уступают им по пределу прочности при разрыве и ио морозостойкости. [c.106]

    Вулканизаты ненаполненных смесей на основе наирита обладают прочь остью около 220—250 кгс1см . Наполнители, как правило, не повышают прочности вулканизатов, но увеличивают модули и понижают относительное удлинение. Вулканизаты имеют хорошее сопротивление раздиру и истиранию, высокое сопротивление тепловому старению, а также высокий показатель эласти1Ч-ности по отскоку, близкий к показателю эластичности резин из натурального каучука. [c.111]

    Винилсплоксановы-й каучук СКТВ, содержит небольшое количество винильных групп его вулканизаты сочетают высокую стойкость к тепловому старению с низкой остаточной деформацией они могут эксплуатироваться в температурном интервале от —55 до - 300 С, а кратковременно до 330 [c.114]

    Высокая стойкость к тепловому старению, исключительная стойкость к действию разнообразных растворителей, гугасел и топлив при повышенных температурах являются характерной особенностью фторсодержащих каучуков. Вулканизаты фторкаучуков обладают высоким сопротивлением истиранию и стойкостью к агрессивным средам —щелочам, сильным окислителям (дымящей серной кислоте, азотной кислоте, концентрированной перекиси водорода, озону). [c.115]

    Парафин — это смесь твердых углеводородов жирного ряда кристаллического строения. Получается из парафинистых дистил-латов нефти путем их охлаждения. Парафин выпускается разных марок в зависимости от степени очистки. Технически очищенные парафины марок Г и Д имеют температуру плавления не ниже 50 °С. Парафин легко выпотевает на поверхность резиновой смеси и вулканизата, понижая клейкость резиновой смеси, но увеличивая сопротивление резины старению. Применяется парафин в количестве до 2% от количества каучука. [c.182]


Библиография для Вулканизаты старение: [c.45]   
Смотреть страницы где упоминается термин Вулканизаты старение: [c.407]    [c.60]    [c.112]   
Химия эластомеров (1981) -- [ c.346 ]




ПОИСК





Смотрите так же термины и статьи:

Вулканизаты

Старение



© 2025 chem21.info Реклама на сайте