Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дебая, ионная атмосфера

    Дебай п Гюккель вывели формулы для Я) и %2, в которые входит одна эмпирическая константа. Их расчеты были улучшены в дальнейшем Онзагером. Он учел, что движение ионов ие совершается по прямой и что ионная атмосфера представляет собой статистическое образование. Уравнение Онзагера имеет следующий вид  [c.123]

    Величину удельного поверхностного заряда со стороны раствора находят так же, как плотность заряда ионной атмосферы при вычислении коэффициента активности ионов по первому приближению теории Дебая и Гюккеля. В обоих случаях отправными уравнениями служат уравнения Больцмана и Пуассона. При определении достаточно использовать лишь одну координату — расстояние от поверхности электрода в глубь раствора. Уравиение Пуассона (3.30) в этом частном случае упрощается до [c.264]


    Статистическая теория электролитов (теории Дебая и Гюккеля). Потенциал ионной атмосферы [c.403]

    Как видно из электростатической теории электролитов, зависимость lgY от корня квадратного из ионной силы является линейной. Это было подтверждено многочисленными экспериментальными исследованиями электролитов с очень малыми концентрациями. Из всего сказанного следует, что уравнение (XVI, 48) справедливо лишь для сильно разбавленных растворов, так как при выводе уравнения для потенциала ионной атмосферы были сделаны некоторые существенные математические упрощения и физические предположения. Уравнение (XVI, 48) называется предельным уравнением Дебая—Гюккеля для Коэффициент А зависит от температуры (непосредственно и через диэлектрическую проницаемость О). Проверка [c.413]

    Опыты Вина и Дебая — Фалькенгагена являются убедительным экспериментальным доказательством реального существования ионной атмосферы и позволяют представить себе характер ее строения. Представление о ионной атмосфере является одним из фундаментальных положений электростатической теории электролитов. [c.436]

    Начала количественной теории сильных электролитов, разработанные Дебаем и Хюккелем (1923), имели целью отразить влияние этого электростатического взаимодействия между ионами на различные свойства раствора. Эта теория, учитывающая взаимодействие иона с окружающей его ионной атмосферой, дала возможность установить количественную связь между радиусом этой атмосферы и концентрацией электролита, определить скорость восстановления ионной атмосферы при перемещении иона (время релаксации— см. 168) и решить ряд других вопросов, важных для понимания процессов прохождения тока через раствор. Однако теория построена на ряде упрощающих допущений и до настоящего времени применима лишь к растворам с очень низкой концентрацией. [c.393]

    Дебаем и Онзагером предложена теория электрической проводимости растворов, представляющая собой развитие основных положений электростатической теории растворов (см. 156). По теории Дебая — Онзагера снижение эквивалентной электрической проводимости при переходе от бесконечно разбавленного раствора к растворам конечных концентраций связано с уменьшением скоростей движения ионов. Это объясняется появлением эффектов торможения движения ионов, возникающих за счет сил электростатического взаимодействия между ионом и его ионной атмосферой. [c.461]

    Электростатическая теория разбавленных растворов сильных электролитов, развитая Дебаем и Гюккелем в 1923 г., позволила теоретически вычислить средний коэффициент активности электролита, эквивалентную электропроводность сильных электролитов, а также теоретически обосновала правило ионной силы. При этом они сделали ряд предположений, справедливых только для предельно разбавленных растворов. Во-первых, они предположили, что единственной причиной, вызывающей отклонение свойств раствора электролита от идеального раствора, является электростатическое взаимодействие между ионами. Во-вторых, они не учитывали размеров ионов, т. е. рассматривали их как безразмерные точечные заряды. В-третьих, электростатическое взаимодействие между ионами они рассматривали как взаимодействие между ионом и его ионной атмосферой. Ионная атмосфера — это статистическое образование. [c.251]


    Формула (5.13) не совсем точна. Генри в 1931 г. провел подробный анализ этого явления, используя представления Дебая—Хюккеля об ионных атмосферах и их влиянии на подвижность ионов. Он нашел, что [c.139]

    Электрический потенциал, который создает ионная атмосфера в точке, соответствующей центральному иону, легко вычислить с помощью уравнения (492). Он как раз соответствует той работе, которую совершает единичный заряд при рассмотренном выше воображаемом переносе. Эта работа, умноженная на заряд центрального иона 2 в, дает коэффициент активности, достоверный в тех пределах, в которых остается справедливым предельный закон Дебая — Хюккеля. Для одно-однозарядных электролитов в водных растворах область применимости предельного закона ограничивается концентрациями 10 моль/л (для бинарного электролита f+=f-=f ). Средний коэффициент активности определяется формулой [c.333]

    Плотность ионной атмосферы, ее радиус, скорость возникновения и разрушения сложным образом влияют на термодинамические и электропроводные свойства электролита. Количественно учесть влияние всех этих фактов теория Дебая и Гюккеля была в состоянии только для простейших электролитов и при условии очень сильного разбавления. [c.119]

    Если поверхность не проводит ток и заряды (т. е. адсорбированные ионы нли ионогенные группы) расположены редко, вокруг каждого заряда (согласно теории Дебая — Гюккеля) в растворе возникает ионная атмосфера. Если же заряды на поверхности коллоидной частицы расположены плотно и тем более если поверхность проводит ток, в этих условиях за счет обобществления ионных атмосфер отдельных зарядов образуется структура двойного электрического слоя. [c.315]

    Электропроводность растворов сильных электролитов. Теория сильных электролитов Дебая и Гюккеля исходит из положения, что между ионами существуют силы взаимодействия. Вблизи каждого иона данного знака будет находиться большее число ионов с обратным знаком. Такое распределение ионов называется ионной атмосферой, которая создает на месте данного иона потенциал, противоположный ему по знаку. При наложении внешнего поля ионная атмосфера вокруг иона вызывает появление двух эффектов, тормозящих движение иона в растворе релаксационный эффект, обусловленный нарушением симметрии расположения ионной атмосферы вокруг центрального иона, и электрофоретический эффект, обусловленный движением иона против потока сольватированных ионов противоположного знака. Кроме этих двух сил, тормозящих движение иона в растворе, существует и сила трення, зависящая от вязкости среды, в которой движется нон. [c.272]

    Теоретические расчеты коэффициентов активности основаны на представлениях, которые раскрывают природу сил, вызывающих отклонение свойств реальных растворов от свойств идеальных. Для расчета коэффициентов активности ионов используется теория Дебая —Хюккеля. По этой теории ион в растворе рассматривается как заряженная частица, окруженная ионной атмосферой преимущественно из противоположно заряженных ионов, а взаимодействие иона с ионной атмосферой имеет электростатический (кулоновский) характер. Коэффициенты активности зависят от заряда иона и параметров ионной атмосферы ее размеров и плотности. Параметры ионной атмосферы определяются ионной силой раствора /, вычисляемой как полусумма произведений концентрации всех ионов в растворе на квадрат их заряда 2  [c.24]

    Согласно теории Дебая — Гюккеля, сильные электролиты полностью диссоциированы на ионы. Однако свободному движению частиц в жидкости препятствуют электростатические силы, действующие между ионами. В растворе, также как и в кристалле, каждый ион окружен ионами противоположного знака, так называемой ионной атмосферой, которая перемещается вместе с центральным ноном и ограничивает его подвижность. В результате электропроводность раствора сильного электролита оказывается меньше той величины, которая должна быть, если бы все ионы могли беспрепятственно перемешаться в электролитическом поле. Следовательно, создается впечатление, что в растворах сильных электролитов число свободных ионов меньше, чем их общая (аналитическая) концентрация. Поэтому для характеристики сильного электролита вводится понятие эффективной (т. е. проявляющей себя в действии) концентрации ионов, называемой также активностью а. Эта величина аналогична концентрации свободных гидратированных ионов (согласно теории электролитической диссоциации). [c.41]

    Входящая в это уравнение величина % имеет определенный физический смысл и играет важную роль. Обратное значение этой величины 1/х имеет размерность длины. Это характеристическая длина, которая в теории Дебая—Хюккеля играет ту же роль, что расстояние г в законе Кулона. По физическому смыслу 1/х есть радиус ионной атмосферы и характеризует собой некую статическую сферу, окружающую центральный ион. Очевидно, что понятие радиуса ионной атмосферы является, в известной степени, условным, так как тепловое движение приводит к перемещению ионов и, следовательно, одни и те же ионы не могут входить в состав сферы. Это приводит к тому, что ионы, составляющие ионную атмосферу, [c.394]


    Вывод основного уравнения. Дискретные заряды ионов внутри ионной атмосферы Дебай и Хюккель заменили непрерывным полем ионной атмосферы и рассматривали взаимодействие иона с ионной атмосферой как кулоновское. Средняя плотность заряда р в какой-то точке связана со средней величиной потенциала 1 ) в этой точке уравнением Пуассона  [c.440]

    Предположение об электростатическом взаимодействии ионов объясняет отличие растворов сильных электролитов от идеальных. Вычисляя работу образования ионной атмосферы, можно количественно оценить степень отклонения от идеального состояния и найти коэффициент активности электролита. В результате получается уравнение предельного закона Дебая—Гюккеля, справедливое для сильно разбавленных бинарных растворов сильных электролитов  [c.214]

    Недостатки теории Дебая — Гюккеля — Онзагера связаны с несовершенствами и ограниченностью ее теоретических допущений, рассматривающих лишь электростатическое взаимодействие ионов и усредненное влияние окружающей среды. В современных теориях концентрированных растворов электролитов, кроме образования различных ассоциатов, учитываются сольватация ионов и их конечные размеры, асимметричность распределения концентрации в движущейся ионной атмосфере, локальные изменения вязкости вблизи ионов, взаимодействие электрофоретического и релаксационного торможения и другие эффекты. Очевидно, что уточненные исследования растворов электролитов возможны лишь с учетом всей сложности их строения и разнообразных взаимодействий. [c.225]

    Строение растворов сильных электролитов хорошо описывается моделью ионных облаков или ионных атмосфер (Дебай). Ионная атмосфера представляет собой собрание ионов противоположного знака, стремящихся приблизиться к данному иону. Тепловое движение в растворе этому препятствует и установливается некоторое состояние равновесия, при котором ионная атмосфера получает некоторую плотность. Плотность ионной атмосферы растет при увеличении концентрации и падает при повышении температуры (возмущающее действие). При перемещении иона в,тепловом движении ионная атмосфера оказывает тормозящее действие, так как она должна также пере-меш аться с ним. Особенно сильно взаимодействует ионная атмос< )ера с ионом в электрическом поле, так как направление ее перемещения должно быть противоположным. Взаимодействие ионных атмосфер с ионами уменьшает их активность. [c.203]

    Дебай и Гюккель приняли основную идею Гхоша о кристалло-подобиом распределенпи ионов в растворе. Однако в растворах попы в результате теплового движения располагаются вокруг любого иона, выбранного в качестве центрального, в виде сферы. Так как в растворе преобладает поступательное движение (а не колебательное, как в крпсталла.х), ноны, входящие в состав сферы, окружающей центральный ион, непрерывно обмениваются местами с другими ионами. Такая статистическая сфера называется ионной атмосферой. Все ионы раствора равноценны, каждый нз них окружен ионной ат.мосферой, и в то же время каждый центральный иоп входит в состав ионной ат1 шс( зеры какого-либо другого иона (рпс. 3.2). Существование ионных атмосфер и есть тот характерный признак, который, по Дебаю и Гюккелю, отличает реальные растворы электролитов от идеальных. [c.83]

    Возможность образования различных ассоциатов совершенно не укладывается в рамки теории Дебая — Гюккеля, согласно которой единственным результатом электростатического взаимодействия является возникновение ионной атмосферы. Невозможность, по крайней мере в настояш,ее время, построения теории, адекватно отражающей природу растворов электролитов, привела, как уже отмечалось, к использованию эмпирических и иолуэмиирических уравиений. К наиболее часто применяемым уравнениям подобного рода относятся формулы Гюнтельберга [c.99]

    В теории Дебая — Гюккеля специально не оговаривается природа заряженных частиц. Их теория поэтому в принципе может быть иримеиепа к любым системам, в которых имеются подвижные заряженные частицы п в которых возможно образованпе ионных атмосфер. К числу подобных систем относятся коллоиды и полиэлектролиты. Общим для пнх я1зляется присутствие двух сортов частиц, резко различающихся по своим размерам и зарядам. [c.99]

    Форма ионной атмосферы во многом определяется характером распределения зарядов в гранулах и макроионах. Применение теории Дебая — Гюккеля к таким системам ограничивалось пока первым приближением, причем полученные результаты носят качественный характер. Подобное изложение данного вопроса представляется поэтому нецелесообразным, тем более что уравнения, оп сывающие поведение коллоидов и полиэлектролитов, при их ог-ниченной применимости, весьма слолсны и неудобны для проведения расчетов. [c.100]

    Для проведения расчета можно использовать модель раствора, предложенную Дебаем и Гюккелем, согласно которой каждый ион окружен ионной атмосферой со знаком заряда, противоположным заряду центрального иона. Так как сильные электролиты диссоциированы полностью (а = 1), то все изменения молярной электропроводности с концентрацией обусловлены изменением энергии взаимодействия. Тогда в бесконечно разбавленном растворе, где ионы настолько удалены друг от друга, что силы взаимодействия между ними уже не могут проявляться, ионная атмосфера не образуется, и раствор электролита ведет себя подобно идеальной газовой сн-сгсмс, В этих условиях молярная электропроводность электролита будет наибольшей и равной .  [c.121]

    Применительно к сильным электролитам эффект Вина можно объяснить на основе теории электропроводности Дебая — Онзаге-ра. Согласно представлениям Де(5ая и Гюккеля в растворе каждый ион окружен НОННОЙ атмосферой с радиусом 1/А,. Пока скорость его движения мала (по сравнению со скоростью разрушения и образования ионной атмосферы), тормозящие эффекты, связанные с ионной атмосферой, сохраняются и электропроводность ири данной концентрации равна [c.126]

    Успешное применение предельного закона обязано тому факту, что в очень разбавленных растворах изменение концентрации не влияет заметным образом на ближайшее окружение иона. Так, в 0,001 М Na l среднее расстояние между ионами 94 А, в то время как радиус ионной атмосферы 100 А [см. уравнение (XV.7.10)]. Это достаточно большие расстояния, чтобы не искажать результатов, предсказываемых теорией Дебая — Хюккеля. (Это значит, что число пар ионов на расстояниях, меньших, скажем, 20 А, достаточно мало, чтобы не влиять на поведение системы.) [c.452]

    Однако для более высоких концентраций такая простая модель раствора ун е не представляет ценности, бопее того, приближение > 1г г/ЬкТ < 1 не может использоваться вблизи иона г [см. уравнение (ХУ.7.2)]. По Бьер-руму [50], любую пару ионов, взаимодействие между которыми составляет величину порядка 2кТ и более, следует рассматривать как ионную пару, а пе как независимые ионы, а теория Дебая — Хюккеля справедлива лишь для свободных ионов, находящихся друг от друга на расстоянии, достаточном для того, чтобы взаимодействие между ними было меньше 2кТ. Если обозначить это расстояние гв и пренебречь ионной атмосферой вокруг такой ионной пары , то для пары, образованной двумя ионами с. зарядами 2, и получим [c.452]

    Не следует думать, что при беспорядочном движении иона его ионная атмосфера движется вместе с ним как одно целое. Прн движении ион покидает свою ионную атмосферу и непрерывно на пути своего движения создает новую. Этот процесс разрушения старой и образования новой ионной атмосферы протекает хотя и быстро, но не мгновенно, вследствие чего при движении иона /надушается симметричность ионной атмосферы. 1тричем Т1лотность е больше позади движущегося иона Оче- видно, появление асимметрии ионной атмосферы также вызывает некоторое торможение поступательного движения иона, которое получило название эффекта, асимметрии или релакса-Таким образом, из-за наличия ионной атмосферы прид вй-жении иона возникают два тор.мозящих эффекта электрофоретический, обусловленный движением ионной атмосферы в сторону, противоположную направлению движения иона, и эффект ре-., у лаксации, обусловленный асимметрией ионной атмосферы. V Убедительным подтверждением правильности представлений Дебая и Гюккеля является так называемый эффект Вина, обнаруженный в 1927 г. Если уменьшение подвижности ионов с увеличением концентрации объясняется наличием ионной атмосферы, то уничтожение нию подвижности предельного  [c.434]

    Дебай и Фалькенгаген показали, что при достаточно боль шей частоте переменного тока взаимные смещения иона и ион Н011 атмосферы настолько малы, что ионная атмосфера иракти чески симметрична, а потому тормозящий эффект релаксации обусловленный асимметрией ионной атмосферы, должен ис чес1нуть. Время релаксации ионной атмосферы 9 есть время по истечении которого ионная атмосфера исчезает после уда ления центрального иона (и, очевидно, образуется вновь вокру иона, появивщегося в новой точке). Величина 9 (в сек) опре деляется, по теории Дебая — Фалькенгагена, уравнением [c.435]

    Представления об образовании ионных атмосфер в растворах электролитов, нашедшие отражение в теории Дебая — Хюккеля, объяснили многие свойства электролитных растворов. Однако ряд экспериментальных фактов не объяснялся этой теорией. Непонятной была, например, аномальная электрическая проводимость, впервые обнаруженная Каблуковым (1890) при исследовании растворов НС1 в амиловом спирте. Обычно удельная электропроводность концентрированных растворов уменьшается с добавлением электролита. Каблуков нашел, что начиная с некоторой высокой концентрации электрическая проводимость раствора НС1 в амиловом спирте с дальнейшим ростом концентрации не уменьшалась, а возрастала. Впоследствии такого рода концентрационная зависимость электрической проводимости была обнаружена во многих других системах, включая водные растворы (например, растворы AgNOa). [c.445]

    Высокочастотное титроваиие — вариант бесконтактного кондуктометрического метода анализа, в котором анализируемый раствор подвергают действию электрического поля высокой частоты (порядка нескольких мегагерц). При повышении частоты внешнего электрического поля электропроводность растворов электролитов увеличивается (эффект Дебая — Фалькенгагена), поскольку уменьшается амплитуда колебания ионов в поле переменного тока, период колебания ионов становится соизмерим с временем релаксации ионной атмосферы (примерно 10 с для разбавленных растворов), тормозящий релаксационный эффект снимается. Поле высокой частоты деформирует молекулу, по-Л5физуя ее (деформационная поляризация) и заставляет полярную молекулу определенным образом перемещаться (ориентационная поляризация). В результате таких поляризационных эф фектов возникают кратковременные токи, изменяющие электропроводность, диэлектрические свойства и магнитную проницаемость растворов. Измеряемая в этих условиях полная электропроводность высокочастотной кондуктометрпческой ячейки X складывается из активной составляющей >.акт — истинной проводимости раствора — п реактивной составляющей Хреакт — мнимой электропроводности, зависящей от частоты и тппа ячейки  [c.111]

    Если изменять не напряженность электрического поля, а его частоту, то при высоких частотах направление движения иона будет изменяться так часто, что вместо перемещения он будет совершать колебания. Такие же колебания, но в обратном направлении будет совершать ионная атмосфера. Поскольку при этом ее разрушения не происходит, то релаксационный тормозящий эффект отсутствует (Яц = 0) и эквивалентная электропроводность электролита возрастет (эффект Дебая — Фолькенгагена), хотя ее величина все же будет отличаться от величины эквивалентной электропроводности бесконечно разбавленного раствора  [c.42]

    Для вычисления электростатического потенциала щ иона к-го сорта относительно окружающей его ионной атмосферы Дебай и Хюккель ввели два приближения, позволяющие применить уравнение Пуассона, что существенно упрощает задачу. Первое приближение заключается в замене точечных зарядов ионов непрерывно распределенным зарядом переменной плотности. Второе — в предположении действия кулоновского поля, сог.пасно которому два точечных заряда взаимодействуют друг с другом с силой, обратно пропорциональной квадрату расстояния. Рассмотрим 1 см раствора, содержащий Л/ь Л/г,. .., Л/ - ионов каждого сорта с валентностями 21, 22,. . ., 2j. [c.391]

    Теория Дебая и Ойзагера. В теории Дебая и Хюккеля при рассмотрении движения ионов в растворах электролитов не учитывалось, что прямолинейность поступательных движений ионов нарушается их тепловым движением. Учитывая это обстоятельство, Онзагер развил более полную теорию. При подходе к количественной теории необходимо дать четкое представление о модели, лежащей в ее основе. Очевидно, при с О взаимодействием между ионами можно пренебречь п считать движение каждого из них независимым. При конечных концентрациях каждый ион окружен ионной атмосферой противоположного знака. Это приводит к возникновению сил, тормозящих движение ионов. При наложении поля ионная атмосфера стремится двигаться в направлении, противоположном направлению движения иона. Это эквивалентно появлению добавочного трения, которое получило название ка-тафоретического эффекта или добавочной катафоретической силы трения Л. Кроме того, следует иметь в виду, что ионная атмосфера образуется не мгновенно, а в течение некоторого времени 0, называемого временем релаксации. При движении иона в электрическом по.ле в каждом новом его положении ионная атмосфера должна образовываться заново, а когда ион передвинется в следующую позицию, то оставляет за собой частично сформировавшуюся ионную атмосферу противоположного знака, которая также тормозит движение иона. [c.404]


Смотреть страницы где упоминается термин Дебая, ионная атмосфера: [c.84]    [c.127]    [c.146]    [c.414]    [c.272]    [c.252]    [c.302]    [c.58]    [c.261]    [c.66]    [c.323]    [c.334]   
Термодинамика и строение водных и неводных растворов электролитов (1976) -- [ c.60 ]




ПОИСК





Смотрите так же термины и статьи:

Атмосфера

Атмосфера, ионы

Дебай

Иониты Ионная атмосфера

Ионная атмосфера



© 2025 chem21.info Реклама на сайте