Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рибонуклеаза хроматография

    Хроматография рибонуклеазы на КМ-целлюлозе [c.113]

    Окисленная рибонуклеаза. Действие химотрипсина на рибонуклеазу менее специфично, чем действие на этот субстрат трипсина. Об этом свидетельствуют более низкие выходы полипептидов при разделении гидролизата методом ионообменной хроматографии [154]. В выделенных полипептидах установлено наличие 151 аминокислотного остатка, в то время как в полипептидах, полученных в результате расщепления трипсином, обнаружено всего 124 остатка. По-видимому, это объясняется тем, что некоторые участки полипептидной цепи появляются более чем в одном из пептидных обломков. О более сложном составе гидролизата можно судить по небольшим количествам примесей (как правило, не выше 15%), присутствующих в большинстве основных фракций. Эти примеси не мешали определению аминокислотного состава фракций, но их присутствие еще раз подчеркивает трудности, которые встречаются при фракционировании смесей пептидов, полученных менее специфическими методами гидролиза. Гидролизаты рибонуклеазы были получены инкубированием в течение 24 час с ферментом при pH 7. При более кратковременном инкубировании гидролизат содержал дополнительно [c.204]


    Хроматография белков. Рибонуклеаза [1514]. [c.295]

    Нативная рибонуклеаза не чувствительна к действию трипсина и химотрипсина. Поэтому сначала проводили окисление рибонуклеазы (остатки цистина при. этом окислялись до остатков цистеиновой кислоты) и окисленный препарат подвергали затем действию протеолитических ферментов. При помош,и хроматографии на дауэкс 50-Х-2 [82] из триптического гидролизата было выделено 15 пептидных фрагментов [82], а из гидролизата после действия химотрипсина — 32 фрагмента [83]. Для количественного определения аминокислотного состава выделенных пептидов и для достижения их чистоты необходимо использовать достаточное количество исходного материала (200 мг). Фракции, содержащие более одного компонента, подвергают повторному фракционированию в несколько измененных условиях. Расщепление с помощью пепсина [6], хотя оно и не столь селективно, позволяет, однако, получить другие пептиды, которые помогают воссоздать полную структуру рибонуклеазы. [c.415]

    Аффинная хроматография 5-пептида и 5-белка, образованных в результате протеолитического расщепления бычьей панкреатической рибонуклеазы, обсуждалась в разд. 4,4. Хроматография может даже быть использована для очистки синтетических аналогов 5-пептидов (см. табл. 11.1). Выделение пептидов, содержащих свободную 5Н-группу, рассматривалось в разд. 6.6. [c.130]

    Очистка Б. часто включает обработку ферментами, разрушающими другие типы Б. (напр., протеазами и рибонуклеазой при выделении дезоксирибонуклеиновой к-ты). Далее следует фракционирование полученной смеси Б., обычпо сначала грубое (осаждение солями, органич, растворителями и др.), а затем хроматографическое. Очень часто используют методы гель-фильтрации, электрофореза и ионообменной хроматографии, т, к. многие Б. обладают свойствами к-т или оснований. [c.129]

    Наибольшей скоростью прохождения колонки обладают компоненты, не способные проникнуть в зерна гелевой фазы. Сефадексы 0-10 и 0-15 служат для фракционирования низкомолекулярных веществ, первый из них используется для веществ с молекулярным весом до 700, а второй — до 1500. Гели сефадекса 0-25 не способны поглощать, а следовательно, и задерживать перемещение по колонке веществ с молекулярным весом 3500— 4500. Этот предел для сефадекса 0-50 лежит в области значений молекулярных весов 8000—10000, а для сефадекса 0-75 эта величина достигает 40000—50000. Медленно перемещаются по колонке низкомолекулярные вещества, для которых коэффициент распределения между гелевой и жидкой фазами приближается к единице. Во многих случаях компоненты смеси при хроматографическом разделении на сефадексах следуют в порядке уменьшения их молекулярных весов. Однако наблюдается иногда и специфическое сорбционное взаимодействие разделяемых веществ с матрицей сефадекса, что влечет за собой увеличение коэффициента распределения К и снижение скорости перемещения по колонке. Так, замедление движения хроматографических зон наблюдается у основных пептидов и аминокислот в основных растворителях и кислых аминокислот и пептидов в кислых растворителях. Наблюдается также повышение степени удерживания в колонке ароматических веществ при гельфильтрации [22]. Ряд белков, таких как рибонуклеаза, лизоцим, трипсин, бычий сывороточный альбумин, в отсутствие солей также сорбируется и удерживается сефадексом при хроматографии. В связи с этим целесообразно проводить элюирование на сефадексах растворами солей или кислот. [c.202]


Рис. 16. Хроматография гидролизата дрожжевой РНК рибонуклеазой Т1 на ДЭАЭ-целлюлозе [42]. Рис. 16. <a href="/info/214143">Хроматография гидролизата</a> дрожжевой РНК рибонуклеазой Т1 на ДЭАЭ-целлюлозе [42].
    Хроматографическое фракционирование рибонуклеазы методом распределительной хроматографии Около 5 мг кристаллической рибонуклеазы, приготовленной по методу с трихлор-уксусной кислотой, хроматографируют на ко- [c.916]

    Кислый аминополисахарид гепарин [М> 10 ООО) известен в качестве антикоагулянта крови. Кроме того, он применяется в биохимии как ингибитор рибонуклеаз. Это его качество, по-видимому-отражает некоторое сходство полимера, содержащего две-три суль, фогруппы на каждую дисахаридную структурную единицу, с РНК-Две эти особенности определили использование гепарина в качеств, лиганда для аффинной хроматографии факторов коагуляции крове и (особенно широко) для очистки белков, взаимодействующих и нуклеиновыми кислотами (полимераз, обратной транскриптазы, рес стриктаз, факторов инициации и элонгации белкового синтеза и др.). Кроме того, иммобилизованный гепарин связывает липопротеид-липазы и некоторые липопротеиды. Гепарин-агароза выпускается всеми упомянутыми фирмами-поставщиками аффинных сорбентов, кроме Bio-Rad . [c.370]

    Пример 14. Очистка полн(А)-РНК на олиго((1Т)-целлюлозе [Bantle et al., 1976]. Метод очпстки полп(А)-РНК из суммарной РНК полисом аффинной хроматографией на олиго(с1Т)-целлюлозе пользуется чрезвычайно широкой популярностью благодаря своей простоте и эффективности. Существенным преимуществом этого сорбента по сравнению с полп(и)-сефарозой является его неуязвимость для рибонуклеаз, присутствующих, как правило, в очищаемых препаратах РНК. [c.445]

    Основные научные работы Мура, которые он проводил совместно с У. X. Стайном, посвящены исследованию строения белков. Они разрабатывали точные аналитические методы для определения аминокислотного состава белков. Развили (1951) метод ионообменной хроматографии, который применили для выделения и очистки рибонуклеазы. Благодаря сочетанию хроматографических методов анализа, разработанных Муром и Стайном, с предложенным ими фотометрическим нингидринным методом и их же автоматическим коллектором фракций они создали методику, позволяющую анализировать белковый гидролизат в течение двух недель. Применение синтетических ионообменных смол (сульфокатионитов) позволило им сократить (1950-е) это время до недели. Затем (1958) процесс ими был автоматизирован, а время анализа уменьшено до нескольких часов. Мур и Стайн установили [c.347]

    Гель-хроматографию особенно целесообразно применять в тех случаях, когда необходимо очень быстро отделить высокомолекулярные компоненты от низкомолекулярных. На специально подготовленной колонке (3X6 сл) с сефадексом 0-25 (грубым) Эрлан-деру [25] удалось всего за 2 мин полностью отделить рибонуклеазу от воды, содержащей тритий. Этот быстрый аналитический метод позволяет изучить кинетику обмена трития и на этом основании сделать выводы о степени спирализации растворенного белка. Несколько позднее аналогичная методика была успешно использована при исследовании вторичной структуры растворимых рибонуклеиновых кислот [26] и дезоксирибонуклеиновых кислот [27]. Конечно, нуклеиновые кислоты также могут быть модифицированы химическим путем, например действием диазотированной сульфаниловой кислоты [28]. Избыток реагента и побочные продукты реакции удаляют на сефадексе 0-50. [c.146]

    С помощью гель-хроматографии уже давно уда лось установить наличие ассоциатов в некоторых белковых препаратах. Педерсен [96] на сефадексе G-150 выделил и охарактеризовал чистый димер из старых препаратов сывороточного альбумина. Компоненты, выходящие с колонки еще раньше, представляли собой тример и тетрамер сывороточного альбумина (см. [163]). После того как чистую рибонуклеазу А в 50%-ной уксусной кислоте лиофилизировали, а затем фракционировали на сефадексе G-75, в элюате было обнаружено несколько активных фракций. Главный пик соответствует исходному мономеру белка, тогда как остальные компоненты, судя по объемам выхода, являются ассоциатами [97]. Очевидно, аналогичное явление образования димера и других полимеров обна> ружили Зигель и Монти [98] при исследовании уре-азы. Хроматографией на сефадексе G-200 им удалось из кристаллического фермента (Sigma, тип С 1) выделить несколько более быстро движущихся фракций. На основании объемов выхода для них с помощью уравнения Эккерса [59] был вычислен радиус по Стоксу это дало возможность определить молекулярный вес. Таким образом был установлен чрезвычайно интересный факт из препарата, помимо уреазы (мол. вес 483 000), удалось выделить ее димер и тример. По-видимому, в свободном объеме элюировались также продукты еще более высокой степени агрегации. [c.175]

    Колоночная хроматография на иопообмеиных смолах применяется также и для фракционирования пептидов. После первых относительно малоуспешных работ по разделению пептидов на смоле Дауэкс 50X8 стали использовать для этих целей менее сшитую смолу Дауэкс 50X2, пористость которой лучше соответствовала размерам молекул пептидов. На этой смоле был проведен ряд успешных работ Хирса, Мура и Штейна [36, 37] по разделению ферментативных гидролизатов окисленной рибонуклеазы. Однако общим недостатком этих работ являлось использование солевых буферных растворов, что приводило к необходимости их последующего удаления из элюатов. Последнее осуществлялось или путем динитрофенилирования и экстракции полученных ДНФ-производных пептидов с помощью органических растворителей [38], или путем использования в качестве буферов растворов ацетата или формиата аммония, которые удалялись сублимированием или заменой натрия в элюатах на аммоний путем ионного обмена на сильно сшитой смоле в аммониевой форме с последующим удалением аммониевых солей путем сублимации [39]. [c.169]


    В настоящее время при помощи хроматографии производят полное удаление солей из воды (получение дистиллированной воды без перегонки), разделение сложных смесей аминокислот и гидролизатов белков (см. рис. 56), разделение сложных смесей фосфоса-харидов, пуриновых и пиримидиновых оснований (рис. 57), фракционирование белков (цитохрома, рибонуклеазы, инсулина и др.), фракционирование нуклеиновых кислот и различных полимеров, отделение пепсина, трипсина, алкогольдегидрогеназы, очистку антител, выделение стрептомицина, хлортетрациклина, полимиксина и других антибиотиков, а также алкалоидов, гормонов, антигиста-минных веществ. Большой интерес представляет также терапевтическое использование ионообменных смол для регулирования состава ионной среды в желудочно-кишечном тракте и для диагностических целей. [c.116]

    Фракционирование пептидов на ионообменных смолах основано на целом ряде принципов, о которых уже говорилось выше (гл. I и II). Сюда входят и различия в электрохимических свойствах разделяемых фрагментов, и различное сродство неполярных радикалов к бензольным кольцам матрицы смолы, и изменение концентрации конкурирующих ионов в буферном растворе. Поэтому элюция пептидов со смолы достигается путем пропускания через колонку буферных растворов изменяющейся ионной силы и pH. Это изменение концентрации ионов и pH может осуществляться линейно или ступенчато. Элюируемые компоненты идентифицируют нингидриновой колориметрией, лиофилизуют (высушивают из замороженного состояния) и проверяют на гомогенность с помощью хроматографии на бумаге и методом пептидных карт. Негомогенные пики фракционируют дополнительно. В качестве примера можно привести разделение пептидов, полученных триптическим гидролизом окисленной (т. е. лишенной дисульфидных мостиков) рибонуклеазы (рис. 11). [c.84]

    При обработке Р1-аденозин-(2, 3 -циклофосфат)-5 -Р -дифенил-пирофосфата пантотин-4, 4 -дифосфатом образуется 2, 3 -цикло-фосфатная форма окисленного кофермента А. После инкубации этого соединения с рибонуклеазой Т2 (для получения исключительно З -фосфата), превращения его в тиоловую форму и очистки с помощью хроматографии был получен кофермент А с общим выходом 63%. Биохимическая оценка показала, что полученный продукт биологически активен. Щелочной гидролиз или гидролиз ядом гремучей змеи приводит к образованию единственного нуклеотидного производного—аденозин-3, 5 -дифосфата, без примеси аде-нозин-2, 5 -дифосфата 1442] (см. схему на стр. 276). [c.275]

    Применение методов хроматографии на бумаге для быстрого анализа пуриновых и пиримидиновых оснований [76, 77] в гидролизатах небольших количеств рибонуклеиновых кислот вскоре показало, что молярная эквивалентность этих оснований скорее была исключением, чем общим правилом. Еще более важным было наблюдение, что разделение смеси нуклеотидов в щелочном гидролизате рибонуклеиновой кислоты при помощи ионообменной хроматографии дает изомерные пары нуклеотидов, являющихся, как позже было показано, нуклеозид-2 - и пуклеозид-З -фосфатами [78]. Хотя эти изомеры не подвергались взаимопревращению в щелочи, кислота легко катализировала миграцию фосфатного остатка между 2 - и З -гидроксильными группами. Таким же методом были обнаружены 5 -фосфаты аденозина, цитидина, гуанозина и уридина (среди прочих продуктов) после гидролиза кишечной фосфодиэстеразой рибонуклеиновых кислот, предварительно обработанных рибонуклеазой [79]. Со значительно более высокими выходами нуклео-зид-5 -фосфаты получены при действии диэстеразы змеиного яда на рибонуклеиновые кислоты из дрожжей и печени теленка гидролизаты содержали также свободные нуклеозиды и нуклеозид-2 (3 ),5 -ди-фосфаты [80]. [c.373]

    Фракционирование рибонуклеазных гидролизатов рибонуклеиновых кислот при помощи ионообменной хроматографии [98], электрофореза на бумаге и хроматографии на бумаге [99] полностью подтвердило вывод, основанный на изучении грубых смесей, и привело к исследованию свойств индивидуальных олигонуклеотидных компонентов. Кратковременная обработка рибонуклеазой (или инкубация в условиях диализа) показала, что первоначально в результате трансфосфорилирования образуются пиримидиновые нуклеозид-2, З -циклофосфаты (и олигонуклеотиды с концевым 2, 3 -циклофосфатом) [100] и что последующее действие фермента осуществляет гидролиз этих циклических фосфатов до соответствую- [c.377]

    Было приведено более убедительное доказательство присутствия щелочеустойчивых динуклеотидных участков в рибонуклеиновой кислоте. Такая устойчивость является результатом присутствия 2 -замещенных соединений, вероятно 2 -0-метильных производных нуклеотидов [119, 200, 201]. Деградация изолированных динуклеотидов посредством обработки фосфомоноэстеразой с последующим периодатным окислением и элиминированием фосфата приводит к замещенным мононуклеотидам после дефосфорилирования последние образуют соединения нуклеозидного характера, которые не окисляются перйодатом. По своему поведению при хроматографии углеводный компонент идентичен 2(или 3)-0-метилрибозе [200]. Метилирование 2 -гидроксильных групп в рибонуклеиновой кислоте должно сообщать ей устойчивость к расщеплению как щелочью, так и панкреатической рибонуклеазой [202]. [c.401]

    При фракционировании пептидов из окисленной рибонуклеазы (27—29] для элюирования были использованы те же растворы, что и для хроматографии аминокислот они содержали ВЯ1Л-35, но не содержали тиодигликоля. Жидкость, вытекающая из колонки диаметром 1 и 2 см, собирали фракциями соответственно по 2 и 10 мл из каждой фракции отбирали определенную часть для анализа нингидриновым методом. После щелочного гидролиза белка проводили анализы для предварительной характеристики размеров элюируемых пептидов, а также для того, чтобы убедиться, что не [c.89]

    Хороших способов препаративного разделения смесей различных молекул ДНК и РНК пока не существует. Да и получать эти вещества в нативном состоянии, не повреждая их, научились лишь в самые последние годы. При выделении нуклеиновых кислот имеется целый ряд технических препятствий. Самое бо.льшое препятствие — это ферменты рибонуклеаза и дезоксирибонуклеаза, расщепляющие их с огромной скоростью и трудно поддающиеся инактивации. Второе осложнение — чрезвычайная чувствительность макромолекул этих полимеров к гидродинамическим возмущениям. Как указывалось вьппе, достаточно иногда струи, возникающей при быстром выдувании раствора ДНК из пипетки, чтобы вызвать заметную деполимеризацию. Поэтому некоторые из применявшихся до сих пор методов разделения нуклеиновых кислот, дававших пестрые и неясные результаты, были скорее методами разделения частично фрагментированных молекул друг от друга. Это относится, например, к хроматографии препаратов ДНК на колонках с целлюлозным сорбентом EGTEOLA или с глиноземом, покрытым гистоном. Тот факт, что фракционирование ДНК с трансформирующей активностью дало ряд активных фракций, показывает, что здесь имело место не разделение различных молекул ДНК (нет сомнений, что трансформирующая активность по определенному локусу присуща одному типу молекул ДНК), а разделение фрагментов молекул, несущих локус с данной трансформирующей активностью (этот локус может занимать всего 0,1 длины молекулы). То обстоятельство, что при хроматографии осколки разного молекулярного веса будут основательно делиться, не вызывает удивления. Однако это не решает методической задачи фракционирования ДНК на химически индивидуальные вещества. [c.257]

    Влияние температуры пиролиза на характер п]]рограымы ]1зу-чалось на примере двух ферментов рибонуклеазы и дезоксирибонуклеазы. Исследование проводили на хроматографе Цвет , используя колонки длиной 3 м, заполненные неподвижными фазами разной полярности скваланом, эластомером SE-30, карбоваксом 20М. Иавеска образца 0,4 мг, время пиролиза 30 сек, температура колонки 100". [c.57]

    Олигонуклеотиды можно разделять с помощью тонкослойной хроматографии или электрофореза в тонком слое или же используя оба этих метода (в разных направлениях). Оптимальные условия для разделения сложных смесей олигонуклеотидов в тонких слоях еще не разработаны. Нами установлено, что продукты частичного гидролиза синтетических полинуклеотидов и нуклеиновых кислот хорошо разделяются на тонких слоях анионообменников [32, 33]. По-видимому, весьма перспективен в этом отношении также электрофорез на тонких слоях ионообменников [34]. Недавно описан метод разделения (картирования) продуктов гидролиза РНК панкреатической рибонуклеазой (ЕС 2.7.7.16) и рибонуклеазой Т (ЕС 2.7.7.26) иа слоях немодифицированной це.плюлозы [35]. [c.46]

    Хроматографическое фракционирование рибонуклеазы методом распределительной хроматографии Около 5 мг кристаллической рибонуклеазы, приготовленной по методу с трихлоруксусной кислотой, хроматографируют на колонке диаметром 1,2 см, содержащей 6 г кизельгура (гифло суперсел). Адсорбент растирают с вдвое меньшим по весу количеством органической фазы расслоенной эмульсии из 56 г воды, 20 г сульфата аммония и 24 г мо-ноэтилового эфира гликоля, взбалтывают с водной фазой и вместе с ней вводят в колонку. При проявлении водной фазой происходит отчетливое разделение компонентов (рис. 255). 20 30 0 во Выделение рибонуклеазы в чистом виде [c.916]

    Другая серия работ, проводимых в лаборатории Д. Г. Кнорре (С. К. Василенко и др.), направлена на установление первичной структуры олигонуклеотидов и т-РНК. Основу этих исследований составляет остроумное использование фосфодиэстеразы змеиного яда. Олигонуклеотиды тина Pup(Pup)nPyp, образующиеся при гидролизе РНК панкреатической рибонуклеазой, после снятия З -концевой фосфатной группы подвергали неполному перевариванию фосфодиэстеразой. При этом образуется набор олигонуклеотидов разной длины, причем конце вой нуклеотид в смеси находится в виде нуклеозида. Полученные фрагменты отличаются по величине и могут быть разделены ионообменной хроматографией. Сравнение спектров олигонуклеотидов, содержащих т я (т + 1) нуклеотидов, позволяет определять т + 1)-й нуклеотид. Таким образом, сравнивая попарно олигонуклеотиды, можно определить последовательность в исходном олигонуклеотиде. Работа выполнена совместно с Институтом химии природных соедипений АН СССР. [c.522]


Смотреть страницы где упоминается термин Рибонуклеаза хроматография: [c.211]    [c.79]    [c.79]    [c.190]    [c.88]    [c.414]    [c.405]    [c.310]    [c.146]    [c.219]    [c.44]    [c.153]    [c.335]    [c.31]    [c.100]    [c.335]    [c.135]    [c.402]    [c.86]   
Методы химии белков (1965) -- [ c.229 ]




ПОИСК





Смотрите так же термины и статьи:

Рибонуклеаза



© 2025 chem21.info Реклама на сайте