Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая стойкость наполнителей

    Стойкость определяется химической стойкостью наполнителей [c.218]

    Эпоксидные лакокрасочные материалы, не содержащие летучих растворителей, наносят преимущественно горячим распылением с подогревом или безвоздушным распылением. Их применяют для получения механически прочных и химически стойких покрытий по поверхности металла и бетона, например для защиты напорных труб и баков, а в композиции со стекловолокном для ремонта и облицовки мазутных и бензиновых цистерн. Их применяют еще в качестве шпатлевок по бетону для получения защитных покрытий, отличающихся абразивостойкостью и химической стойкостью. Наполнителями в таких шпатлевках служат мел, окись железа, каолин, силикат кальция, алюминиевая пудра, а отвердителями — преимущественно полиамиды. Такие шпатлевки не дают усадки, отличаются хорошей адгезией и стойкостью к колебаниям температуры. [c.35]


    Чистый фторопласт обладает хорошей химической стойкостью, малым коэффициентом трения, широким диапазоном рабочих температур, однако он подвержен деформации под нагрузкой и интенсивному износу. Наполнители, вводимые во фторопласт, повышают сопротивление износу примерно в тысячу раз, сопротивление нагрузке давлением —в 2—5 раза тепловое расширение снижается в 2—3 раза. Аналогичное влияние оказывают наполнители на свойства других полимеров. [c.229]

    Из смеси резольной смолы с асбестом или графитом в качестве наполнителей получают фаолит — материал, обладающий высокой химической стойкостью к действию большинства кислот и органических растворителей. [c.193]

    При создании материалов, работающих в условиях высоких температур и больших динамических нагрузок, целесообразно использовать в качестве наполнителя углеродные волокна или их филаменты, обеспечивающие существенное упрочнение композиции и более равномерное распределение компонентов шихты [1—3]. В качестве связующих целесообразно использовать термореактивные полимеры фуранового ряда, имеющие высокую термическую и химическую стойкость и большой пиролитический остаток 1[4, 5]. При изготовлении композиций из термореактивных смол с порошкообразными наполнителями смолу обычно растворяют в органическом растворителе и в раствор вводят катализатор отверждения ионного типа. После удаления растворителя, например ацетона, образующуюся твердую массу дробят и формуют. В случае использования углеродных фила-ментов применение ацетонового раствора полимера нежелательно из-за неизбежного разрушения филаментов при дроблении твердой массы. [c.206]

    Наполнители разделяются на усилители (активные наполнители), увеличивающие прочность вулканизатов, и инертные, не увеличивающие прочности. Последние вводятся в резиновую смесь для придания вулканизату каких-либо специфических свойств (химической стойкости, теплостойкости и др.). [c.318]

    Полиизобутилен без наполнителя и полиизобутилеи с наполнителем (марка ПСГ) обладает высокой химической стойкостью во многих агрессивных средах материал неустойчив в минеральных и растительных маслах и других органических жидкостях при небольших давлениях (порядка 0,3 МПа). [c.203]

    В случае горячих объектов нужно обращать внимание на достаточную химическую стойкость при рабочих температурах. При этом покрытия могут стать хрупкими и пористыми. Кроме того, из них могут выделяться вещества, специфические для коррозии, например двуокись углерода из наполнителей или при ее образовании в результате окисления (см. раздел 6.1). [c.158]


    На химическую стойкость полимерных материалов существенное влияние оказывает и наполнитель, причем важны не только стойкость в среде собственно наполнителя, но и его влияние на граничные слои полимера. [c.39]

    Пластмассы имеют достаточную прочность, высокую химическую стойкость в агрессивных средах, водонепроницаемость, тепло- и морозостойкость и малый удельный вес. Многие из них обрабатываются механически и свариваются. Чистые пластические массы относятся к диэлектрикам ц имеют малую теплопроводность. Для повышения теплопроводности в них в качестве наполнителя иногда добавляют графит. [c.60]

    Стеклопластики [54] представляют собой материалы, состоящие из стекловолокнистого наполнителя и связующих (различных термореактивных и термопластичных олигомеров). Наиболее широкое распространение получили связующие на основе полиэфирных, эпоксидных, фенолоформальдегидных олигомеров. Химическая стойкость стеклопластиков определяется химической стойкостью связующего. Наибольшей химической стойкостью обладают стеклопластики на основе эпоксидных и фенолоформальдегидных смол. Промышленность выпускает листы, трубы, газоходы, цилиндрические емкости. [c.346]

    Фаолит-термореактивная пластмасса, изготовляемая на основе резольной фенольно-формальдегидной смолы. В качестве наполнителя применяют асбест, асбест и графит или асбест и кварцевый песок. В отвердевшем состоянии фаолит отличается высокой химической стойкостью, прочностью и может подвергаться механической обработке. Фаолит выпускают в сыром виде (для покрытий, футеровки, в качестве замазок) и в виде листов и готовых изделий. Трубы изготовляют диаметром 33—300 мм с толщиной стенки 8,5—12,5 мм, длиной 1,0—2,0 м. Изделия из фаолита отличаются хрупкостью и не допускают гидравлических и механических ударов. Температурный предел применения 120 °С. [c.337]

    Пластики, армированные или же наполненные дисперсными фазами, обладают замечательными свойствами высокой удельной прочностью в сочетании с химической стойкостью, низкой теплопроводностью и технологичностью в изготовлении деталей и конструкций. Армированные пластики со специальными наполнителями применяют в качестве теплозащиты объектов космической техники, а также в конструкциях с высокой продольной устойчивостью. [c.156]

    Ингредиенты резиновых смесей существенно влияют на стойкость резин к набуханию. Увеличение дозировок техуглерода и неактивных наполнителей сокращает содержание каучука в резине и повышает ее стойкость к набуханию. Активный техуглерод марок П-324, П-234, К-354 с большой удельной геометрической поверхностью и развитой структурой снижает диффузию жидкостей в каучуки. Введение каолина повышает маслостойкость, барита и техуглерода — химическую стойкость. Присутствие пластификаторов увеличивает набухание, поэтому их дозировки сокращают и подбирают вещества, не растворяющиеся в данной агрессивной среде. Повышенное содержание связанной среды, введение ультраускорителей или активных ускорителей повышает стойкость резин к набуханию. Защитные коллоиды (казеин, столярный клей) также увеличивают стойкость к набуханию. [c.201]

    Полиизобутилен обладает высокой химической стойкостью и водостойкостью. Он устойчив на холоду к воздействию разбавленных и концентрированных кислот, а также щелочей. При одновременном действии кислорода и света, особенно ультрафиолетовых лучей, полиизобутилен подвергается частичной деструкции. Светостойкость полиизобутилена и стойкость к воздействию кислорода повышается при совмещении с каучука ми, полиэтиленом и некоторыми другими полимерами, а также с такими наполнителями, как сажа и графит. Минеральные наполнители можно вводить в полиизобутилен.в количестве до 90% от массы полимера. [c.88]

    Роль пластмассовых покрытий в современной технике трудно переоценить. Превосходная химическая стойкость, водостойкость, погодоустойчивость, стойкость к изменению температуры и другие свойства полимерных материалов позволяют использовать их для защиты от коррозии и агрессивного воздействия химических сред самого разнообразного химического оборудования, трубопроводов, строительных конструкций. Пластмассовые покрытия позволяют повысить срок службы обычных конструкционных материалов, а это означает, что в ряде случаев нет необходимости применять дорогостоящие нержавеющие стали и сплавы. Хорошие декоративные свойства пластмасс в сочетании с такими свойствами, как устойчивость к воздействию микроорганизмов, низкая газопроницаемость, отсутствие токсичности и т. д. дают возможность использовать пластмассы для создания различных слоистых материалов, успешно применяемых для декоративного оформления и упаковки. Покрытия на различные изделия и рулонные материалы могут быть нанесены разными способами в зависимости от физических свойств полимерного материала, а также от вида покрываемого изделия. Для создания покрытий полимерные материалы могут использоваться в виде расплавов, растворов, порошков, пленок. Одним из наиболее интересных является метод нанесения порошкообразного полимера в псевдоожижениом слое. Покрытия на основе высокомолекулярных эпоксидных смол на металлических деталях самого сложного профиля могут быть получены окунанием предварительно нагретой детали в ванну, в которой находится псевдоожиженная порошкообразная смола и отвердитель. Для нанесения покрытий на наружные и внутренние поверхности крупногабаритных конструкций разработаны различные конструкции многокомпонентных распылителей, с помощью которых можно наносить на поверхность как жидкие композиции, так порошковые и волокнистые наполнители. Несколько лет назад появились сообщения о вакуумном методе нанесения пленочных покрытий. Покрытия в этом случае образуются путем приклеивания под вакуумом полимерной пленки к поверхности изделия [235]. [c.195]


    В США проводят исследования по получению высокомолекулярных соединений, обладающих повышенной теплостойкостью при сохранении хорошей химической стойкости. Получены высокотеплостойкие полимеры при сополимеризации винилиденфторида с гексафтор-пропиленом. Для повышения теплостойкости вводят в качестве наполнителей графит, кремний. [c.227]

    Введение в пресскомпозицию поберхностно-ак-тивных добавок (жирных кислот или их солей) существенно изменяет адгезию олигомера, а следовательно, и физико-механические свойства фенопластов. Ряд свойств прессовочных материалов (водостойкость, химическая стойкость, диэлектрические свойства, твердость, теплостойкость) определяются природой наполнителя. Так, при введении в пресс-порошки с древесной мукой минерального наполнителя повышаются плотность, твердость, жесткость, теплопроводность и водостойкость материала. Фенолоальдегидные пресспорошки устойчивы к действию слабых кислот и органических растворителей, довольно устойчивы к сильным кислотам и слабым щелочам, но разрушаются при действии сильных щелочей. Недостатками их являются хрупкость и зависимость показателей диэлектрических свойств от температуры и частоты тока. [c.62]

    Для эксплуатации в высокоагрессивных средах разработаны новые типы связующих для стеклопластиков, характеризующихся химической стойкостью и термостойкостью. Так, связующие на основе виннлэфирных смол обладают стойкостью к 400 видам химически агрессивных сред. Стеклопластики на этих связующих негорючи, удовлетворяют противопожарным требованиям. Разработаны стеклопластики, содержащие электропроводящий наполнитель и не накапливающие на поверхности электростатических зарядов, что позволяет применять их в нефтехимической промышленности. [c.40]

    Широкое распространение в машиностроении получили армированные стекловолокном полипропилен, полиформальдегид и поликарбонат. Армированный полипропилен, широко используемый в иасосостроении, обладает высокой водостойкостью (практически не поглощает влагу), повышенной теплостойкостью (до 100°С), хорошей ударной вязкостью, достаточной химической стойкостью и стойкостью к старению. Появившийся на мировом рынке стеклонаполненный полипропилен содержит от 20 до 40% наполнителя. [c.40]

    Эпоксидные смолы отличаются универсальностью свойств. Они обладают малой усадкой, хорошей адгезией к различным наполнителям, высокими механическими свойствами, низким влагопоглощением, допускают переработку при комнатной температуфе и варьирование в широких пределах длительности и температуры отверждения. В них можно добавлять растворители, модификаторы и пластификаторы, чтобы изменить вязкость неотвер-жденного полимера, химическую стойкость и пластичность. При их термообработке отсутствуют выделения лeтy шx продуктов реакции. Они несколько дороже полиэфирных и фенольных смол, но это компенсируется их лучшими технологическими и эксплуатационными качествами. [c.75]

    Химическая стойкость углепластиков позволяет применять их в производстве кислотостойких насосов, уплотнений. Углеродные волокна имеют низкий коэффищ1ент трения. Это дает возможность использовать их в качестве наполнителя для различных связуюших, из которых делают подшипники, прокладки, втулки, шестерни. [c.86]

    Фурановые смолы применяют для изготовления композиций минерального наполнителя, мономера ФА и ионного отвердителя — сульфокислоты (1,5—2,0%). Пластбетон получается смешением этих компонентов. Введением в бетонную массу на основе минеральных вя-жуш,их фурфурилового спирта с солянокислым анилином или фур-фурамида получают полимербетоны. Из большого числа синтетических смол, выпускаемых отечественной промышленностью, фурановые смолы типа ФА или ФАМ обеспечивают наиболее высокую прочность и химическую стойкость полимербетонов на их основе. Эти смолы являются сравнительно дешевыми и недефицитными. [c.206]

    Цинк применяют главным образом для приготовления различных сплавов и для покрытия металлов. Значительные количества цинка содержатся в сплавах, отвечающих составам [в /о(масс.)] 60 Си и 40 Zn — латунь 65 Си, 15 Ni и 20 Zn —нейзильбер. Из соединений цинка большое практическое значение имеют оксид, сульфат, хлорид и сульфид цинка. Оксид цинка служит основой для изготовления цинковых белил, отличающихся хорошей кроющей способностью и химической стойкостью. Значительное его количество используют в резиновой промышленности (наполнитель каучука в производстве автомобильных шин). Оксид цинка входит также в состав некоторых сортов стекла и глазурей. Сульфат цинка применяют для пропитки дерева (как противогнилостное средство), а хлорид цинка — для изготовления минеральных красок, для очистки поверхности при пайке латуни, меди, железа. Сульфид цинка применяют в производстве краски литопон (ZnS -f--t- BaS04), а также при изготовлении светящихся составов. В смеси с сульфидом кадмия dS он служит для изготовления экранов, телевизионных трубок, [c.431]

    В монолитных полах бесшовные покрытия получают путем налива соответствующих мастик, раствора или бетона. Повышение химической стойкости полов достигается применением полиэфирных, эпоксидных или полиуретановых композиций с наполнителями из кварцевого песка, маршалита, андезито-вой или диабазовой муки. [c.137]

    Слюда как минерал слоистой структуры имеет особо важное значение. Мусковит, представляющий собой силикат кальция и алюминия, является почти единственно применяемой разновидностью этого минерала. Пластинки или чешуйки слюды весьма гибки и упруги, обладают высокими электроизоляционными характеристиками, а также термостойкостью. Наполненные слюдой компаунды применяются в электротехнике для коллекторов и т. и. Кроме высоких электрической прочности и термостойкости эти компаунды обладают низкой удельной теплопроводностью, малым во-допоглощением и очень хорошей химической стойкостью, поскольку скорость диффузионных процессов заметно снижается за счет слоистой структуры наполнителя. [c.153]

    Минеральные вяжущие представляют собой весьма обширную группу неорганических соединений, способных твердеть при затворе-НИИ водой или водными растворами солей, кислот и оснований. На основе минеральных вяжущих получают мастики (замазки), растворы и бетоны, отличающиеся крупностью наполнителя. Химическая стойкость таких материалов в основном определяется стойкостью отвержденного вяжущего. Бетоны на основе портландцемента при принятии специальных мер по их уплотнению являются щелочестойкими, но разрушаются в кислотах. Щелочеотойкие бетоны рекомендз ется выполнять на основе алитового портландцемента, карбонатного песка и щебня при водоцементном отношении не более 0,4 для улучшения удобоукладывае-мости следует вводить суперпластификаторы. Стойкость бетонов су щественно повышается при пропитке их расплавленной серой или мономерами типа акрилатов с последующим термокаталитическим или радиационным отверждением. [c.91]

    Максимальной химической стойкостью обладают полимербетоны на фурановых и бисфенольяых полиэфирных связующих, а также полимербетоны на основе жидкого полидиенового каучука СКДН-Н, Испо.чьзуя различные связующие и наполнители, можно получать полимербетоны с заданной химической стойкостью. Дальнейшее увеличение химической стойкости достигается введением порошков неорганических окислов, образующих с агрессивной средой систему неорганического клея — цемента. Повышение прочности химически стойких полимербетонов достигают при использовании каркасного-способа получения на первой стадии изготавливают пористый материал на основе крупного заполнителя и небольшого количества высокопрочного полимерного связующего, а затем норовое пространство заполняют другим материалом. [c.97]

    Футеровка химической аппаратуры Емкостная аппаратура, трубопроводы, желоба, перемешивающие устройства химических аппаратов. Непропитанная древесина (пеоблагорожен-ная) в химической промышленности применяется редко. Область применения аппаратуры из пропитанной древесины определяется химической стойкостью материала пропитки. Употребляется как наполнитель многих пластмасс, для изготовления древесноволокнистых материалов и древеснослоистых пластиков [c.51]

    Для получения более высококачественных антифрикционных материалов были изучены физико-механические свойства, термическая и химическая стойкость фторопластовых композиций с различными наполнителями, а также разработана технология их получения и переработки в изделия. В качестве исходного материала был выбран фторопласт-4 (марки Б) в качестве наполнителей были применены МоЗг ВМ (99% ВК 0,1% В2О3, 0,8% Собц() Ва304 (чистый) коллоидный графит марки С-1 (содержание золы — 1,17%, содержание влаги 0,2%, абразивные свойства отсутствуют, остаток после просева на сите с сеткой [c.40]

    Силитэн готовится на основе кварцевого песка и фторопласта-4 андезитофторопласт — на основе молотого андезита и фторопласта-4. Кварцевый песок и андезит являются наполнителями и в зависимости от количества этих наполнителей меняются свойства новых материалов. Химическая стойкость этих материалов практически ничем не отличается от химической стойкости фторопласта-4. Ниже приводятся свойства новых материалов Б зависимости от содержания в них наполнителей и фторо-пл ста-4. [c.106]

    Природные кислотоупорные материалы. К природным кислотоупорным материалам относятся горные породы, содержащие не менее 55% кремнезема (андезит, бештауиит, гранит, кварцит, базальт), которые обладают высокой химической стойкостью и механической прочностью. Кислотостойкость в азотной и сериой кислоте составляет 95—99 %. Применяются в качестве самостоятельных конструкционных материалов, для футеровки химических аппаратов, а также в качестве наполнителей при изготовлении кислотоупорных замазок [47]. [c.342]

    Барит (тяжелый шпат) — минерал BaSO. Прозрачные кристаллы Б. используют в оптических приборах. Применяют для заш иты от рентгеновских лучей, для покрытий и изоляции в химических производствах (благодаря химической стойкости, в частности по отношению к серной кислоте). Служит сырьем для производства бариевых солей, белил, эмалей, глазури наполнитель при изготовлении резины, клеенки, линолеума, бумаги. [c.24]

    Силиконы, или кремнийорганические полимеры, которые можно рассматривать как органические производные силикатов, получают путем проведения последовательно гидролиза мономеров и поликонденсации из алкил- и арилхлорсиланов и т. д. Они отличаются высокой термостойкостью, химической стойкостью и эластичностью. В зависимости от характера связи между молекулами и природы входящих в их состав радикалов силиконы можно получать в виде смол, каучукоподобных веществ, масел или жидкостей. На основе этих соединений производят жаростойкие, жаропрочные лаки, жидкие смазки, силиконовые каучуки и слоистые пластики. Наибольшее значение приобретают силиконовые полимеры, используемые в качестве покрытий, устойчивых во многих агрессивных средах, кислороде, озоне, влажной атмосфере, к действию ультрафиолетового облучения, а в комбинации с различными наполнителями и к нагреву до 500—550 °С. В качестве наполнителей используют чаще всего порошкообразные алюминий, титан или бор. Силиконовые покрытия наносят на различные металлические конструкции для защиты их от коррозии. [c.141]

    Если один из компонентов композита непрерывен во всем объеме, а другой является прерывистым, разъединенньш, то первый компонент называют матрицей (связующим), а второй - арматурой (армирующим элементом, наполнителем). Матрица в композите обеспечивает монолитность материала, передачу и распределение напряжений в наполнителе, определяет тепло-, влаго-, огне- и химическую стойкость Есть композиты, для которых понятие матрицы и арматуры непримени1ю, например, для слоистых композитов, состоящих из чередующихся слоев, или для псевдосплавов, имеющих каркасное строение. Псевдосплавы получают пропиткой пористой заготовки более легкоплавкими компонентами, их структура представляет собой два взаимопроникающих непрерывных каркаса. Обычно композиты получают общее название по материалу матрицы. [c.8]

    С б являются регуляторами радикальных процессов полимеризации в производстве латексов, каучуков, пластмасс. Среди регуляторов полимеризации наибольшее значение имеют третичный до-децилмеркаптан и нормальный додецилмеркаптан. Меркаптаны применяют для синтеза флотореагентов, фотоматериалов, красителей специального назначения, в фармакологии, косметике и многих других областях. Сульфиды служат компонентами при синтезе красителей, продукты их окисления - сульфоксиды, сульфоны и сульфокислоты - используют как эффективные экстрагенты редких металлов и флотореагенты полиметаллических руд, пластификаторы и биологически активные вещества. Перспективно применение сульфидов и их производных в качестве компонентов ракетных топлив, инсектицидов, фунгицидов, гербицидов, пластификаторов, комплексообразователей и т.д. За последние годы резко возрастает применение полифениленсульфидных полимеров. Они характеризуются хорошей термической стабильностью, способностью сохранять отличные механические характеристики при высоких температурах, великолепной химической стойкостью и совместимостью с самыми различными наполнителями. Твердые покрытия из полифенилсульфида легко наносятся на металл, обеспечивая надежную защиту его от коррозии, что уже подхвачено зарубежной нефтехимической промышленностью, где наблюдается поли-фенилсульфидный бум . Важно еще подчеркнуть, что в этом полимере почти одна треть массы состоит из серы. [c.83]

    Полиизобутилены — предельные углеводороды, поэтому они обладают высокой стойкостью к действию ряда агрессивных сред. Они растворимы в маслах, алифатических и ароматических углеводородах. В изделиях полиизобутилены используются в невулканизованном состоянии. Введение активных наполнителей (технического углерода, графита) способствует повышению химической стойкости и прочностных показателей. Молекулярная масса и прочность выпускаемых в СССР полиизобутиленов приведены в табл. 13.5. [c.208]


Смотреть страницы где упоминается термин Химическая стойкость наполнителей: [c.16]    [c.16]    [c.13]    [c.72]    [c.69]    [c.89]    [c.365]    [c.47]    [c.167]    [c.103]    [c.106]    [c.145]   
Защита промышленных зданий и сооружений от коррозии в химических производствах (1969) -- [ c.41 ]




ПОИСК





Смотрите так же термины и статьи:

Наполнители



© 2025 chem21.info Реклама на сайте