Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Восстановление катализаторов также

    Необходимыми условиями нормальной работы реакторной части являются также равномерная подача необводненного сырья в реактор, подача достаточного количества перегретого водяного пара в зону отпарки, поддержание нормальных уровней катализатора в бункерах реактора и регенератора, непрерывное удаление мелочи из потока циркулирующего катализатора и нормальная регенерация катализатора в регенераторе до содержания кокса на восстановленном катализаторе не более 0,1—0,2% вес. [c.146]


    По окончании восстановления катализатора скорость потока водорода снижают до 20 л/ч и включают подачу сырья со скоростью 100 мл/ч. В этих условиях проводят стадию гидрирования также в течение 24 ч. [c.181]

    Расход водорода для восстановления катализатора после воздушной регенерации, а также для реакции определялся по показаниям счетчиков [c.264]

    Передача электронов катализатором может также осуществляться прямым взаимодействием атома кислорода с электроном катиона восстановленного катализатора, т. е. по механизму окисления-восстановления катализатора. [c.29]

    Для достижения высокой активности первостепенное значение имеют два фактора общая внутренняя поверхность катализатора и внешняя поверхность экструдата. Последний фактор указывает, что реакция протекает в диффузионной области. Чем меньше размер экструдата, тем выше его активность. Но при этом растет гидравлическое сопротивление слоя катализатора, а на повышение давления газа для преодоления этого сопротивления требуются дополнительные затраты. Поэтому нужно учитывать влияние размера и формы экструдата, а также найти компромисс между величинами внутренней и внешней поверхности. Внутренняя поверхность в основном регулируется за счет изменения количества добавляемого оксида кремния. Влияние количества оксида кремния на удельную поверхность катализаторов видно из табл. 1. Хотя общая поверхность катализатора постоянно растет с увеличением содержания 5102, поверхность металлического железа, измеренная по хемосорбции СО после восстановления катализатора, уменьшается, начиная с определенного содержания 5102. [c.172]

    Так как эффективность процесса определяется прежде всего состоянием катализатора, то можно легко представить ситуацию при которой это состояние в нестационарном режиме обеспечивает большую активность и, что особенно важно, селективность катализатора. Очевидно, в искусственно создаваемом нестационарном режиме можно добиться состава катализатора, в принципе невозможного при неизменных условиях в газовой фазе. Это хорошо видно на примере раздельного механизма окислительновосстановительных реакпий, когда при повышенных температурах протекают полное окисление водорода, окиси углерода, углеводородов и многих других органических веш,еств, а также парциальное окисление олефинов, спиртов, ароматических соединений. Осуществляя раздельно взаимодействие кислорода с восстановленным катализатором, выведенным каким-либо образом из-зоны реакции, и затем взаимодействие реагирующего компонента с вводимым в зону реакции окисленным катализатором, можно значительно увеличить активность и избирательность процесса за счет того, что в таком нестационарном режиме катализатор может поддерживаться в состоянии, оптимальном по энергии связи кислорода с поверхностью. [c.17]


    Существенное влияние на характер и скорость удаления воды из циркуляционной системы оказывает использование цеолитных осушителей циркулирующего газа. Выделение воды в сепараторе наблюдается только при отключении осушителя т. е. вся удаляемая из катализатора вода сорбируется цеолитами (рис. 9.1). Глубокая осушка циркулирующего газа (влажность газа после цеолитных осушителей л 10 млн" ) снижает также общую влажность газа в системе с 500—1000 млн (без использования осушителей газа) до 100—300 млн . Проведение восстановления катализатора при низком давлении и максимальной циркуляции ВСГ и использование цеолитных осушителей способствует формированию катализатора, обладающего высокой активностью. [c.203]

    Изменения эффективности каталитических процессов, осуществляемых при искусственно создаваемом нестационарном состоянии катализатора, можно, по-видимому, ожидать всегда, если эти процессы протекают по раздельному механизму. В частности, по такому пути протекают такие окислительно-восстановительные реакции, как полное окисление водорода, СО, углеводородов и многих других органических веществ при повышенных температурах, а также парциальное окисление олефинов, спиртов, ароматических соединений. Осуществляя каким-либо образом взаимодействие окислителя с восстановленным катализатором й затем — взаимодействие исходного вещества (в присутствии окислителя или без него) с вводимым в зону реакции окисленным катализатором, можно часто увеличить активность и (или) избирательность за счет того, что в нестационарном режиме катализатор может поддерживаться в состоянии, оптимальном по энергии связи кислорода с поверхностью. Примером этого, кроме уже названных процессов, может служить окисление нафталина во фталевый ангидрид на ванадиевом катализаторе [30]. Для этого процесса активность катализатора становится тем большей, чем больше степень окисленности 0, а избирательность процесса практически не зависит от величины 0 нри [c.40]

    Наличие пара в рабочем газе гарантирует, что катализатор не восстановится до железа. Кроме того, оно ускоряет также реакцию СО с водяным паром и снижает отношение СО СОа ниже области возможного восстановления катализатора. [c.123]

    Использование предварительно восстановленного катализатора может сократить процедуру восстановления более чем вдвое, что часто оправдывает высокую стоимость. Большое преимущество может быть получено, если вся загрузка в конверторе предварительно восстановлена. Но предварительно восстановленный катализатор может составлять также часть загрузки, расположенной на входе в конвертор, где он будет способствовать началу реакции синтеза и служить источником тепла в дополнение к нагревателю конвертора. Это выгодно, так как во время восстановления можно использовать более высокую объемную скорость газа. [c.166]

    Разделительные трубные тарелки предохраняют от свободного падения со слишком большой высоты, но они также затрудняют введение загрузочных труб. Катализатор необходимо сбрасывать равномерно по окружности верхней части патрона, чтобы предотвратить образование куч и сегрегацию в слое. Некоторые виды предварительно восстановленного катализатора синтеза более хрупки, чем обычный тип катализатора, и загружаются они поэтому с помощью трубы и загрузочной воронки. Труба и загрузочная воронка требуются также для загрузки полочных реактивов с холодными байпасами. Трубы должны изготовляться из металла, так как катализатор обладает большой плотностью и абразивностью. [c.201]

    I I 35—4 этот катализатор также является промотированной окисью железа. Средний насьтной вес его составляет 2,6 удельная поверхность (после восстановления) 1С-15 м /г объем пор 0-0,1 см /г. [c.228]

    Восстановление проводят также с применением палладия, осажденного на угле (стр. 409). В этом случае можно работать без растворителя и не требуется предварительного восстановления катализатора. [c.252]

    При гидрировании некоторых соединений с платиновой чернью, полученной восстановлением окиси платины, чернь можно использовать иногда два, три или даже большее число раз, предварительно активируя ее (примечание 9) воздухом или кислородом. Использованный катализатор следует переработать (примечание 3) вместе с платиной, полученной из фильтратов (примечание 7), при сожжении фильтровальной бумаги (примечание 10) или снятой со стенок стакана (примечание 11). Для получения наилучших выходов при каталитическом гидрировании в присутствии окиси платины и платиновой черни нужно для каждого восстанавливаемого соединения подобрать наиболее благоприятные условия реакции. Необходимо принимать во внимание следующие факторы температуру, среду, в которой происходит восстановление окиси платины в платиновую чернь (примечание 12), влияние следов неорганических солей (примечание 13) и природу растворителя (примечание 14). Для каталитического восстановления применяется также палладиевая чернь из закиси палладия иногда с нею получаются лучшие результаты, хотя в большинстве случаев следует отдать предпочтение платине (примечание 15). [c.358]


    Электроэнергия в агрегатах синтеза метанола расходуется в основном на питание электродвигателя циркуляционного насоса, а также на разогрев колонны синтеза и восстановление катализатора при пуске агрегата. Таким образом, чем выше перепад давления в цикле и чаще замены (перегрузки) катализатора в колонне синтеза, тем больше расход электроэнергии. [c.442]

    Известно, что для окислительно-восстановительных процессов характерна зависимость кинетических параметров от величины окислительного потенциала [64] например, величина потенциала определяет ингибиторную активность фенолов [65]. Системы же с высоким потенциалом обладают сильными окислительными свойствами, и для них характерны донорные, а не акцепторные свойства по отношению к электрону. Поскольку лигнин состоит из целого ряда различных фрагментов фенольного и хинонного типов, можно ожидать, что скорости их окисления - восстановления будут также зависеть от величины окислительного потенциала [66] (окислительно-восстановительные свойства хинонов описаны в [67-69]). Японские исследователи пришли к выводу, что эффективными катализаторами делигнификации являются хинонные соединения с окислительными потенциалами [c.130]

    Каталитическое восстановление осуществляется также пропусканием предварительно нагретого хлорсодержащего газа в присутствии восстановителя - газообразного водорода - через катализатор - синтетический морденит в водородной форме при температуре 200-250 °С [1793 либо восстановлением с помощью шлам-лигнина, полученного при химической очистке сточных вод производства сульфат-целлюлозы. Шлам является и восстановителем, и катализатором процесса [1803 [c.73]

    Высказано также мнение что частичное восстановление катализатора, содержащего пятиокись ванадия, происходит из-за того, что скорость отдачи электронов нафталином, адсорбированным [c.83]

    Для увеличения поверхности применяют катализаторы на различных носителях, которые также должны обладать определенной структурой, термостойкостью и механической прочностью. В зависимости от условий проведения реакции и типа реактора используют носители с различной пористостью. Носители обычно пропитывают раствором соли, содержащим необходимый для катализа металл. Чаще всего применяют соли, анионы которых можно легко удалить при нагревании,— нитраты, ацетаты и др. Последующие процессы — сушку, прокаливание, восстановление катализатора — проводят уже на носителе. Недостатком такого способа является неравномерность распределения катализатора по поверхности носителя из-за разной доступности пор. Состав такого катализатора может быть неоднородным в крупных порах образование свободного металла может закончиться, а в узких еще продолжаться. Окисление углеводородов будет протекать-тогда не на чисто металлическом катализаторе, а на смешанном (окисел металла и свободный металл). [c.30]

    Исследована [26] активность различным образом приготовленных образцов катализатора Р1/А120з в реакции гидрогенолиза этана. Различная степень дисперсности платины в катализаторах достигалась изменением содержания металла (от 0,1 до 16%) (серия А), варьированием температуры прокаливания катализатора [(6% Р1)/ /А1гОз)] на воздухе перед восстановлением (серия Б), а также изменением температуры восстановления катализаторов [(4,6—16% Р1)/ /А1гОз] водородом в интервале температур 360—700 С (серия В). Полученные кинетические данные свидетельствуют об идентичном механизме реакции на всех катализаторах с размером кристаллитов Р1 в пределах 2,3—14,7 нм. Показано, что гидрогенолиз этана является структурно-чувствительной реакцией. В сериях А и Б с ростом размеров кристаллитов Р1 увеличивалась удельная скорость реакции. В то же время в серии В наибольшую активность проявляли катализаторы с более дисперсным распределением металла. Обнаружено, что удельные активности двух катализаторов, полученных разными способами, но имеющих близкие размеры кристаллитов Р1 (11,7 и [c.92]

    Этерификация жирных кислот спиртами может осуществляться при повышенных температурах без катализатора. Эксперименты показали, что оптимальными условиями термической этерификации являются температура 250—320° С и давление 10— ООатга. Процесс должен проводиться с избытком метанола. Гидрирование метиловых эфиров может осуществляться на медпохромовом или медноцинковом катализаторах. Однако эти катализаторы имеют сравнительно короткий период работы без регенерации. Весьма перспективным оказывается применение для восстановления эфи= ров цпнкхромового катализатора. Этот катализатор работает стабильно, однако при гидрировании эфиров образуется значительное количество углеводородов (до 6—10%). Некоторая модификация катализатора, а также тщательное осуществление процесса восстановления катализатора позволяют снизить содержание углеводородов в сырых спиртах до 2—3%. [c.101]

    Во многих работах отмечается, что железо относится к группе металлов, которые способствуют неравномерному отложению кокса на поверхности катализатора. Предполага ется [3.20], что па окисных катализаторах возможно образование поликристаллических графитов. Поочередное окисление и восстановление катализатора приводит к накоплению стерических изменепип в активном компоненте и к перестройке поверхности с изменением как скорости всех реакций, включая и коксоообразование, так и морфологии кокса. Возможно также образование угольных дендритов [3.21], чему способствует попеременное влияние окислительной и восстановительной сред, приводящее к разъеданию и разрыхлению поверхности катализатора. В таких случаях на поверхности катализатора появляются пе только выступы и неровности, способствующие возникновению трубчатых нитей, но и свобо ные частицы катализатора, играющие самостоятельную роль в образовании нитевидного углерода. Доказательством предполагаемого механизма карбидного цикла может быть общая лимитирующая стадия и общее проме- [c.64]

    Первоначально применяли кипящую разведенную 40% ШБО , но катализатор при ятом быстро восстанавливался до металла. Крепость кислоты была понижена до 30% и даже до 10%, а температура до 80°, причем образующийся альдегид быстро выводился из сферы реакции. Размешиванием облегчают контакт между газом и катализатором, иногда применяя также небольшое давление. Наконец замедляют восстановление катализатора, добавляя окислителя (сернокислое я елезо).  [c.418]

    Сушка и восстановление катализаторов риформинга производится также водородсодержащим газом. Перед этой операщ1ей система риформиига должна быть продута или опрессована азотом или инертным газом. При этом к техническому азоту или инертному газу предъявляются требования по содержанию в них кислорода, окиси и двуокиси углерода, воды (см. гл. 1). [c.188]

    Когда говорят о типах катализаторов, используемых для данной реакции гидрирования, обычно указывают только, что катализатор никелевый или из благородного металла можно сказать, что катализатор принадлежит к группе железа. Однако все эти термины дают весьма неоднозначное описание, в котором соседствуют дезинформация и правда. Например, катализатором группы железа может быть никель, железо или кобальт, причем в одной или нескольких различных формах. Как правило, это нанесенные катализаторы, т. е. полученные осаждением металла на носитель или пропиткой его раствором соли металла. В качестве носителей чаще используют инфузорную землю (кизельгур), порошкообразные оксид кремния и активированный уголь, оксиды магния и редкоземельных элементов, оксид алюминия или молекулярные сита. (Существует много типов окспда алюминия, и каждый из них оказывает свое положительное или отрицательное влияние на получающийся катализатор.) В задачу данной главы не входит описание приготовления катализаторов, которое слишком сложно. Отметим только, что, называя катализатор никелевым, мы не даем ему адекватной характеристики. Даже если назван носитель, то еще нельзя определить, как будет работать катализатор. Свойства катализатора сильно зависят от способа его приготовления, типа носителя, наличия промоторов, введенных сознательно или случайно попавших при осаждении. Способы восстановления и стабилизации катализатора также могут оказать решающее воздействие на его эксплуатационные характеристики, в том числе на активность и селективность. [c.108]

    Отрегенерированный и восстановленный катализатор периодически загружается в реактор / ступени и затем последовательно проходит все реакторы. Транспорт между реакторами осуществляется ВСГ. Из последнего реактора катализатор поступаете бункер-накопитель, где отделяется от пневмоагента. Из бункера-накопителя катализатор периодически ссыпают в регенератор, где в неподвижном слое проводится окислительная регенерация и иные операции по подготовке катализатора к работе в цикле реакции. Единовременно регенерируется 5% общей загрузки катализатора. Система циркуляции катализатора использована Французским институтом нефти в процессе риформинга, а также при осуществлении процесса аро майзинг. Подобные установки могут сооружаться в два этапа [256] сначала монтируют обычную установку риформинга с реакторами, внутренняя конструкщгя которых приспособлена для движения катализатора, на втором этапе монтируют систему регенерации катализатора. При работе со стационарным слоем катализатора поддерживают более высокое давление и более высокую кратность циркуляции, после монтажа- системы регенерации давление снижают. [c.141]

    Выбор способа восстановления и использования катализатора зависит от его структуры и от действия ядов. Во время восстановления железо, образовавшееся в одной части катализатора, не должно подвергаться действию воды, получаюш ейся при восстановлении других частей катализатора. Этого нельзя избежать в отдельной грануле, поскольку железо, образовавшееся на ее поверхности, подвергается воздействию воды, образуюш,ейся в результате восстановления внутри гранулы. Вследствие этого более крупные гранулы катализатора имеют тенденцию к более низкой удельной активности, чем более мелкие гранулы катализатора, которые во время восстановления в меньшей степени подвергаются действию воды. (Более мелкие частицы также реакционноспособнее, поскольку, как это обсуждается далее, они в меньшей степени подвержены влиянию газовой диффузии.) Во время восстановления в слое катализатора вода, получившаяся от восстановления нижних частей слоя (на выходе), не должта вступать в контакт с верхним слоем восстановленного катализатора (на входе) в результате обратной диффузии или смешения. При рециркуляции газа — восстановителя необходимо удалять воду из выходяш,его газа путем его охлаждения в рецикле. [c.165]

    Для окисления в антрахинон используют 93%-ный антрацен, а в перспективе предполагают перейти на 96%-ный. Отсутствуют систематические исследования, позволяюшие определить допустимое содержание различных примесей в антрацене. Можно лишь говорить о том, что с повышением чистоты антрацена уменьшается выход побочных продуктов. И если образование фталевого и малеинового ангидрида, правда, в меньшем количестве, происходит и в случае окисления чистого антрацена (а очистка от них необходима во всех случаях и особой трудности не представляет), то смолистые вещества, образующиеся из примесей, содержащихся в антрацене, сорбируются на частицах антрахинона, и для их удаления необходима сублимационная очистка последнего. Примеси в силу более глубокого окисления ускоряют также восстановление катализатора и его дезактивацию. Наибольшую опасность из них представляют примеси азотсодержащих соединений. и, в особенности, карбазол. [c.130]

    В этой работе остаток после выщелачивания восстановленного катализатора исследовали методом инфракрасной спектроскопии. Анализ показал, что остаток представляет собой нерастворимую окись рения (только одна полоса поглощения при 915 см- отвечает овязи Ке—О), которая должна иметь степень окисления ниже Ке +, так как КезО растворима в воде. Показано также, что количество поглощенного водорода прямо пропорционально содержанию Ке в катализаторах при этом на клон прямых соответсттву-ет отношению Н/Ке=3, следовательно, при 482 °С (температуре опыта) Ке + восстанавливается водородо1М до Ке +. Таким образом, в условиях каталитического риформинга Ке восстанавливается до ЙеОг, Этот вывод подтвержден исследованием образца катализатора с 0,64% Ке методом ЭПР. [c.152]

    В качестве восстановителей чаще всего применяют металлы цинк, олово, железо, амальгаму натрия или цинка — в щелочной или в кислой среде. Восстановление можно также вести алюмогидридом лития (см. 15.2) или водородом над никелем Ренея и другими катализаторами. Так, практически важные для синтеза триарилметановых красителей бензгидрол и его производные получают из соответствующих кетонов при действии цинковой пыли в щелочном или аммиачном растворе, к которому для повышения растворимости продукта добавляют спирт. Цинк применяют в значительном избытке против количества, рассчитанного по уравнению  [c.298]

    Наиб, распространенный способ получения Н.к.-пропитка носителя р-ром, содержащим активные компоненты катализатора, с послед, сушкой и прокаливанием. Для получения оксидных Н.к. обычио применяют солн, анионы к-рых разлагаются при нагр. (нитраты, карбонаты, формиаты и т. п.) для получения металлических необходимо восстановление катализатора, пропитанного раиее р-ром соли. Применяют также пропитку с осаждением на пов-сти носителя нерастворимых гидроксидов с послед, их разложением, нанесение на носитель суспензии активного в-ва, совместное прокаливание носителя и в-ва. Так, напр., прокаливанием смешанных формиатов Ni и Mg можно получить активный никелевый Н.к. гидрирования на носителе MgO. Ми. носители (SiOj, активные угли) имеют небольшие поры размером 1-10 нм, к-рые м.б. закупорены в результате отложения на них кокса во время катализа, что затрудняет диффузию компонентов каталитич. р-ции к активным центрам. Поэтому часто получают бидисперсные Н.к., в к-рых спец. методами (напр., выжиганием добавлетп. орг. в-в) создают поры размером 100-1000 нм. [c.167]

    При нагр. в присут. катализаторов (бронза, комплексы нек-рых металлов), восстановлении, а также при взаимод. с фосфинами и фосфитами, тиокетенами (при УФ облучении), предшественниками карбенов или нитренов (напр., оксази-ридинами) О. т. десульфуризуются с образованием олефинов и серосодержащих соед., напр.  [c.371]

    В табл. 1.30 и 1.31 суммированы литературные данные по гидрированию бутадиена-1,3 и пентадиена-1,3 на металлических, оксидных и металлокомплексных катализаторах. При обсуждении этих данных следует учитывать, что соотношение продуктов при гидрировании диенового углеводорода зависит не только от типа применяемого катализатора, но и от условий проведения реакции (температуры, природы растворителя, если реакция осуществляется в жидкой фазе). Условия приготовления катализатора также сказываются иногда на соотношении продуктов реакции. Так, При гидрировании бутадигна-1.3 на Со-катализаторе, восстановленном при температурах ниже 300°С, отношение бутен-1/бутен-2 составляет 2,33. В то же время на данном катализаторе, восстановленном при температурах выше 400°С, это отношение равно 0,51. В случае металлических катализаторов кислотные свойства носителя также влияют на состав образующихся Продуктов реакцни [107]. Несмотря на это для выявления характерных закономерностей, присущих тому или иному типу катализаторов, мы будем пренебрегать влиянием некоторых факторов на соотношение продуктов реакции. [c.65]

    Нормальный электродный потенщ1ал железа в водных растворах составляет —0,44 В, в то время как сурьмы 0,1 В. В неводных растворах электродные потенщ1алы могут отличаться от их значений в водных растворах, тем не менее для растворителей с гидроксильными группами последовательность расположения металлов в ряду напряженш сильно не нарушается. Поэтому железо должно вытеснять сурьму из ее соедпненай. Также отрицательными являются нормальные электродные потенциалы элементов, входящих в состав нержавеющей стали N1 — 0,236, Сг — 0,71, Мп — 1,05 В. Поскольку все эти элементы прочно связаны в кристаллической решетке нержавеющей стали, основную опасность представляет железо, содержащееся на поверхности сварных швов. Вследствие этого особое внимание уделяют качеству сварных швов стенок сосудов для приготовления гликолевого раствора трехокиси сурьмы, трубопроводов и основных реакторов (Необходима контрольная роданидная проба на железо.) По-видимому, предпочтительнее изготовлять сосуды и трубопроводы из эмалированных материалов или из стекла. Для предотвращения восстановления катализатора до металлической сурьмы было предложено [30] добавлять окислители (0,5—6 экв. на 1 моль трехокиси сурьмы). [c.61]

    В регенераторе производится восстановление катализатора путем кын игания кокса. Генератор устанавливается вертикально на высоте 44,6 м. Корпус и опора регенератора цилиндрические верхнее и нижнее днища конические. В верхней части регенератора установлен батарейный циклон, служащий для улавливания мельчайших частиц катализатора, уносимых вместе с дымовыми газами. В нижней части на опорных трубах установлено распределительное устройство, через которое катализатор подается на регенерацию. Там же смонтирован маточник для подачи вторичного воздуха. Внутренняя поверхность регенератора покрывается тепловой изоляцией, которая удерживается кронштейнами. Для защиты изоляции отизносадвин ущимся катализатором внутри аппарат снабжен облицовочными листами. Штуцеры рассчитаны на Ру = 16 кГ/см . Распределительное устройство, маточник с подводящими трубами, а также часть внутренних деталей, наиболее подверженных износу и коррозии, выполняются из нержавеющей стали марки 1Х18Н9Т, остальные детали — [c.126]

    Следует также указать, что в промышленности красителей иногда находит применение электролитическое восстановление, а также восстановление молекулярным o-дородом в присутствии подх-одящих катализаторов. [c.76]

    Применение катализаторов также повышает селективность процесса и приводит к уменьшению образования кокса и продуктов конденсации. Каталитическое деалкилирование полиалкилфенолов может осуществляться в атмосфере водорода или в отсутствие последнего, как в паровой, так и в жидкой фазах. В качестве катализаторов обычно используют цеолиты [249], алюмосиликаты [250], окислы А1, Мд, Т1, Ре, 2п [251—256] и их смеси [257— 259]. Выход низших фенолов при этом превышает 80%. Интересно, что сульфиды некоторых металлов, являясь активными катализаторами восстановления фенолов в углеводороды [124] в присутствии воды или водного раствора аммиака селективно деалки-лируют полиалкилфенолы. Хорошие результаты были получены при деалкилировании высших фенолов широкой фракции (230— 270 °С) генераторной смолы при 460—485°С и начальном давлении водорода 30 кгс/см2 под действием смеси сульфидов вольфрама и ванадия. Выход фенолов, кипящих до 225 °С, за проход I этих условиях составил 57%, дричем 39% приходилось на долю фенола и крезолов. Соотношение образующихся низших фенолов и углеводородов довольно высоко и составляет 6- 10 l. [c.294]

    Известно, что селективное восстановление ненасыщенных альдегидов трудно осуществить при использовании гетерогенных катализаторов, так как даже небольщие изменения в способе приготовления катализатора (например, растворитель, носитель и т. д.) приводят к образованию смесей различных продуктов, в том числе и продуктов полного восстановления альдегидной группы. Гомогенным катализаторам также присущи эти недостатки [см., например, о декарбонилироваиии с применением катализатора (21)]. Селективное гидрирование а.р-ненасыщенных альдегидов может быть достигнуто с использованием систем типа (32) и (33) [68]. Представляют интерес системы борогидрид — соль палладия(П), гидрирующие только углерод-углеродную л-связь и не затрагивающие альдегидную группу [схемы (7.56) — (7.58)]. Соединения никеля (II) также эффективны, но менее селективны. Из всех известных катализаторов палладиевые системы дают наибольшую воспроизводимость при селективном восстановлении двойной связи в ненасыщенных альдегидах. [c.274]


Смотреть страницы где упоминается термин Восстановление катализаторов также: [c.142]    [c.175]    [c.84]    [c.96]    [c.393]    [c.76]    [c.413]    [c.48]    [c.796]    [c.299]    [c.142]    [c.28]   
Синтез углеводородов из окиси углерода и водорода (1954) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте