Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бинарные хлороформом

    Эта система особенно показательна для проверки точности методик расчета, поскольку она содержит одну бинарную смесь с отрицательным отклонением от идеальной смеси (ацетон — хлороформ) и две бинарных смеси с положительными отклонениями. Парожидкостное равновесие для этой системы может быть вычислено и по уравнению Маргулеса однако для этого потребуется большое количество тройных констант. [c.44]


    ЗАКОНОМЕРНОСТИ СОЛЬВАТАЦИИ ГВАЯКОЛА ПРИ ЕГО ЭКСТРАКЦИИ БИНАРНЫМИ СМЕСЯМИ ХЛОРОФОРМА [c.28]

    Закономерности сольватации гваякола при его экстракции бинарными смесями хлороформа [c.183]

    Общий вид зависимости парциального молярного объема ацетона от молярной доли хлороформа в бинарном жидком растворе ацетон — хлороформ представлен на рис. 4. Изобразите графически характер зависимости парциального молярного объема хлороформа от молярной доли его при постоянных Я и Г. [c.36]

    Задачи работы экспериментально определить состав Б—6 бинарных смесей жидкостей (ацетон — бензол или бензол — хлороформ) по показателю преломления измерить температуры кипения изучаемых смесей определить состав паровой фазы смеси жидкостей путем измерения показателя преломления отобранного конденсата построить и проанализировать диаграмму состояния. [c.30]

    При выполнении данной задачи студент получает 60 мл одной из возможных бинарных смесей хлороформ — ксилол (о-, м- или Л-), четыреххлористый углерод — ксилол, циклогексан — ксилол или бензол—ксилол. Константы этих веществ приведены в табл. 1. [c.9]

    На рис. 9 показана зависимость между температурой кипения при атмосферном давлении и составом для бинарной системы хлороформ—ацетон, образующей гомогенный азеотрон с максимумом на кривой кипения или отри- [c.116]

    В настоящее время имеются отечественные справочники по теплотам смешения жидкостей [24, 25], которые содержат большую информацию. Это открывает возможности для подавляющего большинства бинарных систем найти данные о теплотах смешения или оценить теплоты смешения по аналогии с другой системой, близкой по химической природе компонентов. Отметим, что большие тепловые эффекты смешения наблюдаются в системах, где образование раствора сопровождается разрывом водородных связей или же возникновением молекулярных комплексов. Но и в таких случаях значения тепловых интегралов не слишком велики. Например, для системы хлороформ—этиловый эфир (Я до 2,7 кДж/моль) значение интеграла равно i= 0,015, для системы диэтиламин—этиловый спирт Н до 3,35 кДж/моль) — [c.132]

    С помощью различных экспериментальных методов, таких как измерение давления пара [254—256] и теплоты смешивания [256— 261], ИК-сиектроскопия [262—264] и определение кажущегося мольного объема [261, 265, 266], был установлен факт взаимодействия нейтральных фосфорорганических эфиров с различными органическими разбавителями. Предположение о таком взаимодействии было сделано ранее на основе данных но распределению. Неидеальное поведение бинарных систем есть скорее правило, чем исключение. Направление и степень отклонения (от идеальности) зависят от природы обоих компонентов, причем наиболее заметно отклонение в системах, где используется полярный разбавитель [257, 260, 261, 264]. Обнарул<еп образующийся в упомянутых условиях комплекс 1 1с хлороформом и другими растворителями [258, 259]. [c.44]


    Как показано в разделе 3.3, правильный выбор элюирующей силы подвижной фазы — необходимое, но не всегда достаточное условие успешного разделения. Для целенаправленного выбора или изменения состава подвижной фазы следует ввести рациональную классификацию растворителей по их селективности, как это сделано в отношении элюирующей силы. Основой такой классификации является различная способность растворителей вступать в межмолекулярные взаимодействия различных типов. Например, хлороформ, эфир и октиловый спирт имеют значения е° 0,40 0,38 и 0,50 соответственно. Следовательно, использовав эти растворители в качестве компонентов Бь Бг, Бз в бинарных смесях АБь АБг, АБз, можно получить в среднем удовлетворительные величины удерживания для некоторой группы сорбатов сходной химической природы. Однако при рассмотрении протонодонорных и протоноакцепторных свойств взятых трех растворителей ясно, что хлороформ, окта-нол и эфир должны по-разному взаимодействовать с различными сорбатами. Так, хлороформ, будучи донором протонов, особенно сильно должен способствовать элюированию акцепторов, например аминов. Наоборот, эфир, являющийся акцептором, будет сильнее ассоциироваться с донорами и ускорять именно их элюирование. [c.48]

    Покажем использование уравнения (П.39) на конкретном примере бинарной системы хлороформ — ацетон. Найденные при 35° опытным путе.м парциальные давления компонентов этой системы при различных составах равновесных фаз приведены в табл. 1. [c.52]

    Состав растворителя оказывает влияние на оптические свойства покрытий, полученных и без фазового перехода, за счет изменения структуры пленки. Изменение термодинамического сродства сополимера стирола с акрилонитрилом к растворителю при замене этилацетата на хлороформ приводит к изменению коэффициента светопропускания пленок в области 400—800 нм от 90,2 до 84 %. При изменении содержания этилового спирта в бинарном растворителе метилэтилкетон — этиловый спирт от 12 до 35 %, сопровождающемся ростом структурных образований в пленке сополимера А-15-0, коэффициент яркости изменяется в 25 раз [138, с. 47]. [c.154]

    Таким образом, при идеальной ректификации в дистилляте получается чередование бесконечно малых количеств компонента 2 и азеотропа 23, которые смешиваются друг с другом. Экспериментально чередование составов в дистилляте, конечно, может не замечаться и в результате получается фракция, состав которой постепенно изменяется. Фракция подобного типа называется фракцией переменного состава и ее состав в ходе процесса будет смещаться вдоль линии 23—2. В качестве примера можно упомянуть систему ацетон — хлороформ — бензол [109], в которой имеется один отрицательный бинарный азеотроп ацетон — хлороформ. Следует подчеркнуть, что появление фракции переменного состава обусловлено не недостаточной эффективностью колонки, а самой природой системы. [c.173]

    Режим, близкий к граничному для первого класса фракционирования, с почти полным исчерпыванием компонента в отпарной секции и пересечением границы области ректификации был воспроизведен путем потарелочного расчета от точки кубового продукта к точке питания для азеотропной смеси ацетон—хлороформ — бензол (один бинарный отрицательный азеотроп ацетон — хлороформ) [66]. Здесь же, а также в работе [77] указывалось на возможность одновременного исчерпывания двух компонентов, если их коэффициенты фазового равновесия в точке питания равны. В работе [78] приведен пример потарелочного расчета режима минимальной флегмы для второго класса фракционирования в отпарной секции с получением в качестве продукта воды из азеотропной смеси метанол 1) — изопропанол (2) — вода (5) (один бинарный положительный азеотроп изопропанол — вода). [c.167]

    Активности ацетона в этих бинарных системах изображены графически в координатах, показанных на рис. 63. Пренебрегая взаимной растворимостью воды и хлороформа, определяем, исходя из условия-равенства активностей ацетона, равновесные концентрации его в обеих фазах  [c.119]

    Остановимся на трех современных методах, с помощью которых с большей или меньшей полнотой решаются рассмотренные здесь задачи. Ультрацентрифуга позволяет развить еще один интересный метод, который сводится к измерению удельного объема полимера в растворе [25]. Идея его заключается в том, чтобы создать в кювете ультрацентрифуги градиент плотности. Это осуществляется выбором бинарного растворителя и притом такого, который составлен из более легкого и более тяжелого комнонентов (например, бензола и хлороформа). Ультрацентрифугирование приводит к быстрому (в течение 3—4 часов) установлению седиментационного равновесия в растворителе. Строго говоря, к этому случаю нельзя применить закон Больцмана, так как концентрации обоих компонентов одного порядка, т. е. раствор никак нельзя считать идеальным. Однако оценку величины разделения можно все же произвести по Больцману  [c.168]


    В жидкокристаллических полипептидах наличие равновесной сверхструктуры — холестерической структуры—предполагалось в твердом состоянии в пленках, отлитых из некоторых растворителей [45]. Изучение дифракции рентгеновских лучей, удельного объема и механических свойств твердых пленок ПБГ показало, что холестерическая структура сохраняется в пленках, отлитых из хлороформа и метиленхлорида [46], тогда как обычные кристаллические пленки получаются из растворов в диметилформамиде [47]. Сохранение холестерической структуры было продемонстрировано при получении пленок ПБГ из бинарного растворителя, в котором одним компонентом был нелетучий пластификатор. Оптическими методами можно наблюдать характерный рисунок чере- [c.201]

    В ряде случаев теория бинарных соударений позволяет вычислить константы скоростей бимолекулярных и мономолекулярных реакций в инертных растворителях, причем расчеты находятся в удовлетворительном согласии с опытом. В других случаях при расчетах необходимо учитывать каталитическое действие растворителя. Так, например, такой типичный инертный растворитель, как хлороформ, заметно уменьшает скорость разложения четырехокиси азота и увеличивает скорость обратной реакции по сравнению со скоростями этих реакций в газовой фазе. Могут быть случаи, когда несоответствие между величиной константы скорости, вычисленной по теории бинарных соударений и определенной экспериментально, не может быть-объяснено действием растворителя, которое обычно называют каталитическим. Это наблюдается у так называемых медленных реакций. [c.93]

    Результаты расчетов для бинарных систем бензол — циклогексан, метиловый снирт — четыреххлористый углерод, ацетон — гептан и ацетон — хлороформ подтверждают приведенную выше общую оценку величин 1п у, А 1п у и А 1п у . На примере рассмотренных систем видно, что поправки А 1п у и А 1п у могут быть близки по абсолютной величине и иметь разные знаки. Это означает, что для учета неидеальности паровой фазы при расчете коэффициентов активности необходимо иметь данные о вторых вириальных коэффициентах не только для индивидуальных веществ, но и для смеси. Если же учитывать только коэффициенты В , то вычисленные значения коэффициентов активности могут отличаться от истинных даже больше, чем рассчитанные в предположении об идеальности пара. [c.154]

    В связи с оценкой методов расчета условий фазового равновесия в сложных системах по опытным данным для более простых систем представляет интерес выполненное И. Г. Винниченко и М. П. Сусаревым [151] сопоставление результатов экспериментального исследования равновесия между жидкостью и паром в четверной системе этиловый спирт — хлороформ — ацетон — гексан при 55° С с расчетами по разным методам, основанным на использовании опытных данных для бинарных и трехкомпонентных систем. Сопоставление производилось для 84 четверных растворов, для которых были экспериментально определены составы равновесного пара. [c.346]

Рис. VI, 14. Диаграмма температура кипения—состав бинарной смеси с максимумом температуры кипени я (хлороформ—апетон). Рис. VI, 14. <a href="/info/134461">Диаграмма температура кипения—состав</a> <a href="/info/69302">бинарной смеси</a> с <a href="/info/304685">максимумом температуры кипени</a> я (хлороформ—апетон).
    Большой интерес представляют системы, в которых имеются как положительные, так и отрицательные бинарные азеотропы. Два положительных азеотропа или положительный азеотроп и низкокипящий компонент, не входящий в состав этого азеотропа, порождают образование хребта на поверхности давления. Два отрицательных азеотропа или один отрицательный азеот-. роп и высококипящий компонент, не входящий в состав этого азеотропа, обусловливают появление впадины. При одновременном наличии в тройной системе хребта и впадины может получиться седловина на поверхности давления (рис. 20, в). При наличии седловины к поверхности давления можно провести параллельную концентрационному треугольнику касательную плоскость. Точка касания отвечает седловидному или положительно-отрицательному азеотропу. В соответствии с геометрической природой седловины давление (или температура) в точке седловидного азеотропа не должно быть ни самым большим, ни самым малым в системе. Следоватепьно, седловидные азеотропы не имеют экстремума температуры или давления. Такой азеотроп впервые был обнаружен Райндерсом и де Минье [79] пр исследовании системы ацетон—хлороформ—вода. [c.75]

    Кривые разделяющие линии ректификации получаются при наличии в системе хребта на поверхности температуры, обусловленного образованием в системе отрицательных азеотропов. Как уже было показано, хребет может проходить между двумя точками отрицательных бинарных азеотропов (как в системе ацетон—хлороформ—изопропиловый эфир) или между точкой отр Ицательного бинарного азеотропа и противолежащей вершиной, если она соответствует компоненту с наивысшей температурой кипения (как в системе ацетон—хлороформ—бензол). Характерной особенностью систем, имеющих кривую разделяющую линию, является то, что при ректификации смесей, точки оостава которых лежат в областях, ограниченных этой кривой, вторая фракция представляет фракцию переменного состава и [c.132]

    Если исходной является смесь nti компонентов В п Р, а компонент А является разделяющим агентом, то, прибавив такое его количество, которое соответствует точке пересечения прямых niiA и Мт2, при ректификации в качестве одной фракции получим азеотроп /Пг, а в качестве другой — азеотроп AI. Таким образом, в системах четвертой группы эффективно может протекать только процесс разделения бинарного положительного азеотропа. Примером системы четвертой группы является рассмотренная выше система ацетон—хлороформ—метанол. [c.141]

    Рассмотрим теперь некоторые диаграммы, получающиеся при изучении тройных систем. Возьмем, к примеру, три жидкости, две из которых растворимы одна в другой ограниченно, а две другие пары смешиваются во всех отношениях. В частном случае это могут быть хлороформ, вода и уксусиая кислота. На рис. VII 1.15, а изображена диаграмма системы, в которой ограниченно растворимы компоненты А и В, однако, выше температуры (критическая температура растворимости А и В) эти компоненты также смешиваются во всех отношениях. Гетерогенная область, где тройная система распадается на два слоя, представлена объемной фигурой akba b k. При этом кривая аКЬ ограничивает гетерогенную, область в бинарной системе А—В в зависимости от температуры, а кривые akb и а й Ь представляют собой сечения тройной гетерогенной области поверхностями равной температуры. Если подобные сечения провести через ряд равных промежутков температуры и полученные сечения спроектировать на основание пирамиды, то получится картина, подобная изображенной на рис. VIII. 15, б, где кривые относятся к различным температурам. Если ввести соответствующие обозначения, то и по рис. VIИ. 15, б можно судить о зависимости ограниченной растворимости от температуры. [c.304]

    Закон распределения в бинарной системе нарушается при достаточно высоких концентрациях растворенного вещества. Это объч ясняется тем, что увеличение содержания растворенного вещества может привести к взаимной растворимости несмешивающихся (растворителей. Известно, что вода и хлороформ не растворяются друг в друге. Если к двухслойной системе, состоящей из воды н хлороформа, прибавить ацетон, то он распределится между этими двумя жидкостями. При дальнейшем увеличении его содержания в системе вода — хлороформ вода начнет растворяться в хлороформе, а хлороформ в воде, т. е. каждый из слоев будет состоять из трех компонентов — воды, хлороформа и ацетона. При достаточно высоком содержании ацетона можно получить гомогенный раствор этих трех компонентов. [c.63]

    Ранее [2] нами велись работы по экспериментальному определению параметров экстрактивной реюификации бинарных азеотропных составляющих ацетон-хлороформ и толуол-бутанол. Использование в качестве разделяющего агента компонента исходной смеси - ДМФА защищено авторским свидетельством [3]. [c.127]

    Азеотропная смесь образуется так же и теми же бинарными растворами, которые на диаграмме с — Р имеют точку. пlнuмaль-ного давлеиия. Как пример на фиг. 8 изображена диаграмма с — Р для системы ацетон — хлороформ при температуре 35,17" С. Для [c.21]

    Многокомпонентные азеотропы, соответствующие максимуму давления пара, называются положительными, минимуму давления пара — отрицательными, а седловинной точке — седловинными или положительно-отрицательными. Все три тнпа азеотропных смесей встречаются на практике. Отличительная особенность седловинного азеотропа заключается в том, что температура его кипения не является ни наивысщей, ни наинизщей температурой кипения жидких смесей. Например, в тройной системе хлороформ — метиловый спирт — метилацетат первый компонент образует бинарный азеотроп со вторым с температурой кипення при атмосферном давлении 53,4° С, а с третьим — с температурой кипения 53,8° С. Эти положительные бинарные азеотропы порождают образование лощины на поверхности температур кипения. Благодаря наличию отрицательного бинарного азеотропа метилацетат — хлороформ на поверхности температур кипения получается хребет, простирающийся от этого азеотропа до вершины чистого метанола, имеющего более высокую температуру кипения, чем другие компоненты. В результате пересечения хребта и лощины на поверхности температур кипения получается седловина и образуется тройной седловннный азеотроп с температурой кипения 56,4° С. [c.12]

    Колышко и сотр. [145] показали применимость спектрофотометрии в ближней ИК-области в интервале 1,9—2,1 мкм (5180 см ) для определения воды в бинарных и тройных смесях спиртов (С — j), хлороформа, ацетона и метилизобутилкетона. Органические компоненты смеси анализировали методом газо-жидкостной хроматографии на колонках, заполненных порапаком Q, а также хромосорбом W с 10% полиэтиленгликоля (см. гл. 5). Содержание воды рассчитывали на основе измерения ИК-поглощения образцов той же смеси растворителей с содержанием воды 0,2 и 0,5%. Воспроизводимость определения при анализе смеси ацетона с этанолом (7 3) при содержании воды 0,340% составила 0,003%. [c.427]

    Метод сопоставления констант в жидкой и газообразной фазах. Если теория бинарных соударений применима к растворам, то константа скорости одной и той же реакции в газовой фазе и в растворе должна быть одинаковой. Опыт показывает, что нередко растворитель действительно является инертным или почти инертным по отношению к реагирующим веществам. Так, например, мономолекулярная реакция разложения пятиокиси азота протекает с приблизительно одинаковой константой скорости и в газообра.зной фазе и в таких растворителях, как четыреххлористый углерод, хлороформ, бром, четырехокись азота, нитрпметан и трихлорзаме-щенные производные этана. Напротив, такие растворители, как азотная кислота и дихлорпропан, обладают заметным каталитическим действием понижают скорость этой реакции в среднем в 25 раз и заметно повышают теплоту активации. Значения константы скорости реакции разложения пятиокиси азота 8 некоторых растворителях при различных температурах приведены в табл, 6. [c.87]

    В качестве примера на рис. 114 изображены изотермы-изобары в системе метилацетат (1) — хлороформ (2) — метиловый спирт (3). Первые два компонента образуют бинарный азеотроп М с максимумом температуры кипения. Поскольку в концентрационном треугольнике компонент, противолежащий стороне 12 (метиловый спирт), имеет более высокую температуру кипения, чем два других, на поверхности температур кипения смесехг между точками Л/ и 3 возникает хребет. Образование же в бинарных системах метилацетат — [c.293]


Смотреть страницы где упоминается термин Бинарные хлороформом: [c.130]    [c.164]    [c.44]    [c.716]    [c.338]    [c.101]    [c.376]    [c.464]    [c.466]    [c.32]    [c.25]    [c.66]    [c.130]    [c.303]    [c.15]    [c.269]    [c.129]   
Этилен (1977) -- [ c.57 ]




ПОИСК





Смотрите так же термины и статьи:

Бинарные смеси хлороформ, ацетон

Ректификация систем с одним отрицательным бинарным азеотропом (системы дихлорметан — ацетон — хлороформ и ацетон — хлороформ — бензол)

Хлороформ



© 2025 chem21.info Реклама на сайте