Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбонильная группа реакционная способность

    Кроме того, величины а для ара-(- -R)-замещенных фенилов характеризуют не только индукционный эффект таких заместителей, поскольку они способны вступать в полярный резонанс с карбонильной группой реакционного центра в исходном состоянии, относящегося к типу (—R). [c.50]

    Реакционная способность. Гильман и другие исследователи изучали относительную реакционную способность аналогичных металлоорганических соединений путем сравнения скоростей присоединения металл-углеродных связей к двойной связи карбонильных соединений (С = О) и олефинов (С = С) или к тройной связи нитрилов (С=Ы) [3]. Гильман установил, что для элементов подгрупп А в первых трех группах реакционная способность металлоорганических соединений возрастает с увеличением атомного веса (или атомного номера) материнского элемента, т. е. К<Ыа—К<К—Н<КЬ—К<Сз—Н, а Ве—К< элементов подгрупп Б порядок реакционной способности обратный, например Си—R>Ag—К>Аи—Н. Кроме того, в каждой данной группе соединения наименее реакционноспособного элемента подгруппы А (непереходного) более реакционноспособны, чем соединения наиболее реакционноспособного элемента подгруппы Б (переходного), например Ы-К>Си—К, а Ве—К>2п—К и т. д. В пределах данного периода реакционная способность уменьшается с увеличением атомного номера К>Ве—К>В—Н, а Ма—R>Mg—К>А1—К и т. д. Сравнительное уменьшение активности с увеличением номера группы может оказаться больше того роста реакционной способности, который происходит при увеличении номера периода так, литийорганические соединения более реакционноспособны, чем магнийорганические, а бериллийорганические [c.26]


    Кетон, получающийся в качестве основного продукта разложения гидроперекиси, подвергается дальнейшему окислению, причем преимущественно окисляется метиленовая группа, расположенная по соседству с карбонильной и обладающая, как известно, повышенной реакционной способностью. [c.466]

    На основании рассмотренных работ механизм образования дифенилолпропана в случае кислотного катализа можно представить следующим образом. Роль кислоты (точнее, протона) заключается в активации ацетона — повышении реакционной способности электрофильного углерода карбонильной группы  [c.88]

    Химические свойства. Многие из химических реакций кетонов протекают совершенно аналогично соответствующим превращениям альдегидов. В отдельных случаях наблюдается, однако, различие количественного характера, а именно карбонильная группа кетона по реакционной способности немного уступает карбонильной группе альдегида. [c.219]

    Вследствие Наличия на атоме углерода значительного дефицита электронной плотности карбонильные соединения гораздо легче, чем спирты, реагируют с нуклеофильными реагентами, причем реакционная способность их тем выше, чем больше частичный положительный заряд на атоме углерода карбонильной группы. [c.184]

    Другой характерной особенностью карбонильных соединений является высокая реакционная способность а-водородных атомов, которые шод действием щелочных агентов могут отщепляться в виде протонов. Это обусловлено тем, что наиболее электроотрицательный атом кислорода карбонильной группы вызывает не только появление большого дефицита электронной плотности на непосредственно связанном с ним атоме углерода, но и передаваемый по индукции общий сдвиг электронов остальных связей и в первую очередь ближайших связей С—Н, находящихся в а-положении к карбонильной группе. [c.184]

    Неподеленная пара электронов, оставшаяся у карбаниона после отщепления протона, не фиксирована на атоме углерода. Она оттягивается к карбонильной группе, причем образуется обладающий высокой нуклеофильной реакционной способностью (стабилизированный рассредоточением избыточной электронной плотности) мезомерный анион (I), основность которого несколько ниже, чем карбаниона, и соизмерима с основностью иона "ОН. Большая часть избыточной электронной плотности в анионе (1) находится на атоме кислорода, но атом [c.184]

    Естественно, если в карбонильном компоненте имеется электроноакцепторный заместитель (—/-эффект), то реакционная способность атома углерода карбонильной группы выше, чем в случае незамещенного компонента  [c.193]


    Из приведенного выше механизма конденсации следует, что электроноакцепторные группы оказывают негативное влияние на третьей стадии реакции, так как они снижают нуклеофильную реакционную способность образующегося аниона. Сильные электронодонорные группы, снижая частичный положительный заряд на атоме углерода карбонильной группы, затрудняют как [c.212]

    С точки зрения современных представлений о механизме реакций конденсации низкая реакционная способность ацетат-аниона обусловлена тем, что полный отрицательный заряд на атоме кислорода сильно увеличивает его +Ж-эффект, что снижает б+ на атоме углерода карбонильной группы, а следовательно, и протонную подвижность атомов водорода соседней метильной группы. [c.226]

    Кинетические исследования реакции натрийацетоуксусного эфира с алкилгалогенидами в безводном этаноле, приводящей к С-алкилпроизводным ацетоуксусного эфира, показали, что она имеет второй порядок, аналогично реакциям гидролиза и алкоголиза алкилгалогенидов. На этом основании можно утверждать, что эта реакция относится к реакциям нуклеофильного замещения, протекающим по механизму N2, причем анион натрийацетоуксусного эфира, подобно ионам СМ и ЫОг , можно рассматривать как амбидентный нуклеофильный реагент, в котором местом с наибольшей нуклеофильной реакционной способностью является атом углерода метинной группы, а местом с наибольшей электронной плотностью — атом кислорода карбонильной группы. [c.244]

    Реакционная способность электрофильной частицы, образующейся при реакции Гаттермана, меньше, чем реакционная способность частицы, образующейся при реакции Гаттермана— Коха, так как группа = NH менее полярна, чем карбонильная группа в ацилгалогенидах (из-за меньшей электроотрицательности атома азота по сравнению с атомом кислорода). [c.394]

    В щелочной среде электрофильная реакционная способность формальдегида определяется только наличием дефицита электронной плотности на атоме углерода его карбонильной группы, поэтому в реакцию гидроксиметилирования вступает меньшее число ароматических соединений, чем в реакцию хлорметилирования. Так, в реакцию хлорметилирования помимо фенола и его эфиров вступают бензол и его гомологи и даже хлорбензол, тогда как реакцию гидроксиметилирования удается осуществить только в случае анилина и Л ,Л -диалкил-анилинов, фенола и его эфиров. [c.396]

    Механизм реакции аминов с азотистой кислотой. Азотистая кислота является более слабой кислотой, чем азотная. В азотной кислоте на атоме азота имеется полный положительный заряд, а в азотистой кислоте дефицит электронной плотности на атоме азота даже меньше, чем на атоме углерода в карбонильной группе. Поэтому в отсутствие сильных минеральных кислот электрофильная реакционная способность азотистой кислоты невысока. Увеличить ее можно, проводя реакции с аминами в присутствии сильных минеральных кислот (чаще для этой [c.427]

    Этими соображениями нельзя объяснить повышенную реакционную способность циклогексанона, так как роль углового напряжения в данном случае незначительна. Объяснить повышенную реакционную способность по сравнению с ацетоном в данном случае можно следующим образом. В исходном цикло-гекСаноне имеется торсионное напряжение, так как атом кислорода карбонильной группы находится в одной плоскости с экваториальными атомами водорода соседних метиленовых групп, что создает торсионное напряжение. В продукте же реакции торсионное напряжение значительно уменьшается, так как все метиленовые группы находятся в более выгодной скошенной конформации, а гидроксильная группа занимает более энергетически выгодное экваториальное положение. [c.482]

    Такая поляризация двойной связи определяет значительный электрический момент диполя карбонильной группы, который равен 0,899-10 Кл-м. Все это является причиной высокой реакционной способности альдегидов и кетонов, которая проявляется прежде всего В реакциях нуклеофильного присоединения. [c.126]

    Реакционная способность карбонильной группы определяется ее полярностью. В результате частичного смещения электронной плотности на атом кислорода атом углерода карбонильной группы приобретает заряд и становится центром нуклеофильной атаки. Скорость взаимодействия с нуклеофилом тем выше, чем больше 64 заряд на углеродном атоме. [c.124]

    Электроноакцепторное влияние кислорода и азота соответственно в сложных эфирах и в амидах (индуктивный эффект) намного перекрывается стремлением пеподеленных электронных пар этих атомов взаимодействовать с я-орбиталью карбонильной группы. Реакционная способность карбонильного углерода снижается также при присоединении к нему ароматического [c.199]

    Так как в реакциях нуклеофильного присоединения по карбонильной группе реакционная способность нуклеофила зависит от его основности, а в 5л 2-реакциях — от нуклеофильности, применяя сравнительно малоосновные, но сильнополяризуемые нуклеофилы, удается осуществить механизм ВА1к2 и в других случаях. Было показано, что данный механизм осуществляется прй использовании фенолята натрия в диметилформамиде [52, 1964, т. 29, с. 2006]. [c.437]


    Наконец, мы должны рассмотреть эффект чередования — безусловно наиболее интересное и неожиданное свойство реакционных способностей мономеров, обнаруживаемое при сополимеризации. Как уже было показано, на это свойство пар мономеров указывает величина произведения г г , и, как видно из табл. 8, 1 меющиеся для ряда йономеров данные располагаются в правильную систему, в которой мономеры могут быть сгруппированы в такие ряды, что Г Г2 будет уменьшаться с разделением. Если такие ряды сгруппированы как в табл. Ю, то, очевидно, они идут параллельно способности заместителей в мономере отдавать или отрывать электроны (донорноакцепторным свойствам), причем алкильные и фенильные группы сдвигают мономеры влево, а карбонильные и аналогичные им группы — вправо по ряду. Это наблюдение с самого начала привело к предположению о том, что эффект чередования, по существу имеет полярный характер [14, 86, 122], хотя много раз дискутировался вопрос о том, возникает ли о вследствие простого электростатического взаимодействия нормально распределенных электронов реагирующих мономеров и радикалов или же является результатом более сложного явления [1, 101]. [c.150]

    На одном и том же катализаторе селективность процесса за-виспт от ряда факторов, в том числе от относительной реакционной способности органических веществ или отдельных функциональных групп и от их способности адсорбироваться поверхностью катализатора. Часто оба фактора влияют параллельно или первый из них превалирует над вторым. Вследствие этого, например, двойные связи арилолефинов всегда гидрируются в первую очередь по сравнению с ароматическим ядром, а альдегидные группы — быстрее кетонных. Имеются, однако, примеры, когда реакционная способность к хемосорбции изменяется в противоположных направлениях. Тогда вещество, лучще сорбируемое, вытесняет с поверхности катализатора другой реагент или промежуточный продукт и гидрируется в первую очередь. Этим объясняется, что ацетилен и его гомологи можно селективно гидрировать в соответствующие олефииы, несмотря на более высокую реакционную способность образующихся олефинов. Меньщая сорбируемость целевых продуктов последовательных превращений (например, спиртов при гидрировании кислот и карбонильных соединений, аминов при гидрировании нитрилов н т. д.) позволяет провести реакцию с лучшей селективностью и более высоким выходом. [c.470]

    Реакционная способность карбонильных соединений во всех рассмотренных превращениях зависит от степени поляризации карбонильной группы, т. е. от величины частичного положительного заряда на углеродном атоме. Поскольку алкильные группы оказывают положительный индуктивный эф( )ект, они в некоторой степени нейтрализуют этот заряд. Следовательно, у альдегидов удлинение и разветвление алкильной группы ведет к снижению реакционной способности, а введение в нее атомов хлора — к ее повышению  [c.548]

    Реакционная способность карбонильных и ароматических соединений изменяется в данных процессах в обычном порядке. 1 алогенбензолы еще способны к зтпм превращениям, но ароматические вещества с более электроотрицательными группами в реакцию не вступают. Наоборот, фенол взаимодействует с реакционно-способными альдегидами (особенно с формальдегидом) не только нри кислотном катализе, но и при щелочном, что обусловлено пе-ре Содом фенола в более активную форму фенолята, способного прямо взаимодействовать с альдегидом  [c.550]

    Реакционная способность карбонильных соединений тем выше, чем больше степень поляризации группы СО — чем больше положительный заряд на ее атоме углерода. В этом случае электростатически облегчается взаимное сближение реа гентов и, кроме того, уже в исходном веществе частично реализуется сдвиг электронов, необходимый для реакции. Поскольку алкильные группы оказывают положительный индуктивный эффект, т. е. они в какой-то степени нейтрализуют положительный заряд на карбонильном углероде, удлинение и разветвление алкильной группы ведут к снижению реакционной способности карбонильных соединений. Кетоны обладают значительно меньшей реакционной способностью вследствие индуктивного влияния двух алкильных групн.  [c.329]

    Основные методы получения. Строение карбонильной группы и реакционная способность альдегидов и кетонов. Реакции нуклеофильного ирисое,динения по С=0 связи. Енолизация альдегидов и кетонов при действии 1ШСЛ0Т и оснований, таутомерия. Альдольная и крото-новая кон1 енсация. Особенности свойств ароматических альдегидов и кетонов. [c.195]

    Действие сульфитов на галоидо- и нитросоединения. Реакция замещения. Взаимодействие галоидоалкилов с сульфитом является одним из лучших методов получения алифатических сульфокислот, но в ароматическом ряду эта реакция не имеет особенного значения вследствие сравнительной инертности галоидного атома, связанного с ароматическим ядром. Одна1 о в некоторых, сравнительно немногих соединениях реакционная способность галоида, а иногда и нитрогруппы, достаточна для того, чтобы превращение в сульфокислоту происходило без труда, что зависит от присутствия нитро- или карбонильной группы в орто- или пара-положении. [c.149]

    Соединения с карбонильной группой характеризуются значительной реакционной способностью — альдегиды в большей степени, а кетоны в меньшей. Определенное их количество конденсируется и полимеризуется, в связи с чем увеличивается смолистая часть неуглеводо- [c.264]

    Окситионафтен представляет собой бесцветное вещество с т. пл. 71°, по запаху напоминает нафтолы и, подобно нафтолам, легко сочетается с солями диазония. С соединениями, имеюи1ими реакционно-способные карбонильные группы, с альдегидами и кетонами, он образует окрашенные продукты конденсации, тиоиндогениды, важнейшие представители которых уже были упомянуты прн рассмотрении тиоинди-говых красителей (стр. 700—701). [c.968]

    Разрыв молекулярных цепей обычно сопровождается образованием на их концах радикалов, обладающих высокой реакционной способностью, и в конечном итоге новых концевых групп (гл. 6 и 7). При наличии доступа кислорода чаще всего образуются следующие концевые группы метильная, альдегидная, эфирная, карбонильная, карбоксильная или винильная. Все эти группы имеют характерные полосы ИК-поглощения (табл. 8.1). С учетом этих соображений Журков и его сотруд- [c.241]

    Реакции с производными карбоновых кислот. Аналогично карбонильной группе в альдегидах и кетонах, в производных карбоновых кислот R OY группа OY (Y = Hal, O OR, OR, NR2. ОМ) способна к присоединению реактивов Гриньяра, Реакционная способность производных карбоновых кислот зависит от величины частичного положительного заряда на атоме углерода карбонильной группы (которая в свою очередь зависит от М- и /-эффектов группы У) и уменьшается в ряду  [c.293]

    Повышенную реакционную способность циклобутанона по сравнению с ацетоном можно объяснить уменьшением углового напряжения при переходе карбонильного атома углерода из состояния 5р -гибридизации (угол 120°) в состояние зр -гибри-дизации (угол 109°). Этот выигрыш с избытком компенсирует увеличение торсионного напряжения, возникающего из-за заслонения атома кислорода гидроксильной группы атомами водорода соседних метиленовых групп. [c.482]

    Таким образом, алкильные радикалы, обладая электронодонорными свойствами, замедляют эту реакцию, а в случае хлораля — за счет электроноакцепторного действия группы СС1з (—/-эффект) происходит увеличение реакционной способности карбонильного углерода. Следует обратить внимание на то, что в случае кетонов в отличие от альдегидов с карбонильной группой связаны два радикала, понижающие активность молекулы. Вот почему альдегиды-обладают большей химической активностью, чем кетоны. [c.127]

    Свойства диальдегидов и дикетонов зависят от взаимного расположения карбонильных групп. Соединения, содержащие карбонильные группы рядом (а-положение), обладают повышенной реакционной способностью. Из таких а-дикетонов следует назвать диацетил, который легко образует ляокст — диметилглиоксим (реактив Чугаева)  [c.139]

    Галогеноангидриды обладают высокой реакционной способностью. Атом галогена, связанный с ацильной группой, чрезвычайно подвижен и легко вступает в реакции обмена. Эго происходит при взаимодействии галогеноангидридов с соединениями, содержащими атом металла или активный (подвижный) атом водорода. Вначале нуклеофильный реагент атакует положительно заряженный атом углерода карбонильной группы, а затем подвижный атом водорода присоединяется к кислороду этой группы. Образовавшийся промежуточный продукт теряет галогеноводород с образованием конечного продукта  [c.147]

    На реакционную способность альдегидов и кетонов оказывают влияние группировки, связанные с карбонильной группой. Заместители, проявляющие —/ и —С-эффекты, повышают реакционную способность альдегидов и кетонов, а заместители, проявляющие + / и +С-эффекты, понижают ее. Существенное влияние оказывает также пространственное строение радикалов у реакционного центра. Чем больше стерические трудности, тем меньше скорость реакции. Электронный и пространственный факторы более благоприятны в случае альдегидов, реакционная способность которых выше по срав- [c.124]

    П. Укажите главную цричину стабильности енольной фо мы и низкой реакционной способности карбонильной группы кверцетина. а. Циклическое карбонильное соединение б. Наличие замкнутого сопряжения в гетероциклическом фрагменте [c.133]

    У. Сравните реакционную способность фенилина (Ф) и его полностью гидрированного по циклам продукта (1Ф) к нуклеофильному присоединению по карбонильной группе. а. Одинакова б. Ф>1Ф в. Ф<ГФ [c.142]

    Участвующие в реакции димеризации радикальные частицы иногда обладают способностью образовывать димерные продукты различного строения. В настоящее время установлено существование двойственной реакционной способности у свободных радикалов и ион-радикалов ароматических и гетероароматических карбонильных соединений (Л. Н. Некрасов, А. Д. Корсун, Л. Н. Выходцева, В. П. Гультей, Л. М. Коротаева). Димеризация таких частиц наряду с синтезом иинаконов (V) или гликолей приводит к образованию значительно менее устойчивых продуктов (VI), содержащих енольную группировку и являющихся результатом появления а-связи между атомом углерода карбонильной группы одной частицы и атомом углерода бензольного кольца, находящегося в параположении по отношению к карбонильной группе (взаимодействие по типу голова — хвост ). Так, димеризация свободных радикалов ацетофенона в кислой среде осуществляется в соответствии со следующей реакционной схемой  [c.253]


Смотреть страницы где упоминается термин Карбонильная группа реакционная способность: [c.431]    [c.461]    [c.41]    [c.41]    [c.146]    [c.331]    [c.446]    [c.547]    [c.191]    [c.132]    [c.1144]    [c.61]   
Биохимия Том 3 (1980) -- [ c.103 ]

Введение в электронную теорию органических реакций (1965) -- [ c.24 , c.72 , c.265 , c.337 ]

Введение в электронную теорию органических реакций (1977) -- [ c.293 , c.310 , c.327 ]

Органическая химия (1972) -- [ c.196 ]




ПОИСК





Смотрите так же термины и статьи:

Карбонильная группа



© 2025 chem21.info Реклама на сайте