Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрическая проницаемость параметр

    Диэлектрическая проницаемость. Параметр растворимости. [c.14]

    Для того чтобы выразить коэффициенты активности полярных молекул через три параметра — радиус, дипольный момент растворенного вещества и диэлектрическую проницаемость растворителя, —можно воспользоваться простой электростатической моделью. Для нахождения величины свободной энергии сольватации сферической молекулы радиусом г с точечным диполем в центре можно использовать обычную модель растворителя. Величина / в, полученная Кирквудом [62] из электростатической теории, равна [c.457]


    Сравним полученные выражения с экспериментальными данными. Как уже было отмечено выше, точное значение параметра 0, определяющего дисперсию диэлектрической проницаемости е( ), в настоящее время неизвестно. Сравнивая (9.40) с экспериментальной зависимостью (9.30), можно оценить о= = Л 5 0,3 нм. [c.165]

    В работе [84] рассмотрено влияние количества поглощенных торфом катионов (О) на его диэлектрическую проницаемость. Обнаружено, что величина е увлажненного торфа (И = 20%) при первоначальных добавках А1 и Ма практически не меняется, а при поглощении ионов Са уменьшается. Такое уменьшение, по-видимому, связано с понижением подвижности сорбированных молекул из-за структурных изменений сорбента. Полученные при сравнительно невысоких частотах (600 кГц) результаты дают основание считать, что миграция ионов в электрическом поле не существенна при количестве поглощенных торфом катионов в пределах 0,2 мг/экв на 1 г сухого вещества. В дальнейшем, с увеличением О, наблюдается волнообразное изменение е, что является результатом противодействия двух факторов роста подвижности ионов и их роли как пептизаторов или коагуляторов. Важным вопросом исследования диэлектрических свойств системы сорбент — сорбированная вода является, как отмечалось выше, установление связи между экспериментально определяемыми макроскопическими характеристиками е, г" и молекулярными параметрами сорбента и сорбата. Основой для установления этой связи может служить теория Онзагера — Кирквуда — Фрелиха (ОКФ), в соответствии с которой смесь сорбент — сорбат можно представить как систему различных ячеек сорбента и сорбата. Для такой системы, основываясь на общих теоремах Фрелиха [639], получено соотноше- [c.249]

    Тенденция к увеличению применения физических методов измерения привела к дальнейшей разработке техники измерения диэлектрической проницаемости. Измерение диэлектрической проницаемости (ДП) имеет особое преимущество при ректификации смесей, содержащих воду (ДП-80), а также смесей веществ с резко отличающимися значениями этого параметра. В качестве примера можно назвать смеси уксусная кислота (ДП-6,13) — уксусный ангидрид (ДП-22,2) и метанол—толуол. Азеотропная смесь метанол—толуол, образующаяся при ректификации, имеет ДП-2Б,Н, которая в значительной мере отличается от значений диэлектрической проницаемости исходных компонентов, равных соответственно 33,8 и 2,37 [65]. При определении концентрации толуола в бензоле данный метод измерения также оказывается наилучшим, хотя разница в значениях диэлектрической проницаемости у компонентов смеси равна всего 0,08. [c.461]


    Граничный слой — это слой жидкости, непосредственно прилегающий к поверхности твердой фазы, свойства которого резко отличаются от свойств жидкости в объеме [54]. Граничные слои были обнаружены рентгено-структурными методами [78], измерением диэлектрической проницаемости [181]. Эти методы подтверждают существование граничных слоев, но результаты измерения их толщины и других параметров часто не совпадают. [c.65]

    Параметры электромагнитной волны, проходящей через среду, изменяются в зависимости от ее плотности. В качестве основного параметра, связанного с диэлектрической проницаемостью движущейся среды переменной плотности, может служить изменение фазы электромагнитной волны. [c.39]

    В экспериментальных исследованиях обычно определяются следующие электрофизические параметры tgo — тангенс угла диэлектрических потерь O, диэлектрическая проницаемость е и проводимость J. Связь между ними дается формулой [c.160]

    Для получения наиболее простого уравнения, связывающего скорость относительного движения фаз с параметрами, определяющими свойства дисперсионной среды (вязкость, диэлектрическая проницаемость), двойного электрического слоя ( -потенциал) и внешнего электрического поля (напряженность), необходимо задаться некоторыми ограничениями 1) толщина двойного электрического слоя значительно меньще радиуса пор, капилляров твердой фазы (радиуса кривизны поверхиости твердой фазы) 2) слой жидкости, непосредственно прилегающий к твердой фазе, неподвижен движение жидкости в порах твердой фазы ламинарное и подчиняется законам гидродинамики 3) распределение зарядов в двойном электрическом слое не зависит от приложенной разности потенциалов 4) твердая фаза является диэлектриком, а жидкость проводит электрический ток. [c.220]

    Одним из кардинальных вопросов теории экстракции является априорное предсказание экстракционной способности экстрагента на основании его физико-химических свойств. Большинство исследователей считает, что экстракционная способность для неэлектролитов должна быть связана с параметрами растворимости, для электролитов — с фундаментальными свойствами экстрагентов, например спектральными характеристиками (ИК-спектры), электроотрицательностью и реакционной способностью отдельных групп, входящих в состав молекулы экстрагента, дипольными моментами, зарядом и размером ионов, диэлектрической проницаемостью сред и т. д. [59-62]. [c.16]

    II электрическом поле. Конечные результаты определяются в значительной степени как параметрами, связанными с самим технологическим процессом и окружающими (атмосферными) условиями, так и с факторами, характеризующими порошковую систему размер, форма, насыпная плотность частиц, их диэлектрическая проницаемость, электропроводность, электризация. Влияние этих свойств должно проявляться прежде всего на скорости движения частиц. [c.117]

    По оригинальной методике были проведены эксперименты по определению степени взаимодействия остаточной нефти и ее модели с твердой поверхностью. Эта информация является весомым вкладом в наши представления о свойствах остаточной нефти. С точки зрения методологии выделения остаточной нефти и методов рекомбинации ее компонентного состава для дальнейшего изучения нам удалось использовать целый ряд параметров физикохимической природы, позволяющих в дальнейшем не только найти отличительные особенности остаточной нефти, но и определить критерии при составлении ее модели. К ним могут быть отнесены температурные зависимости, низкочастотная удельная электропроводность, статическая диэлектрическая проницаемость, высокочастотная диэлектрическая проницаемость. [c.95]

    На практике при изучении диэлектрической релаксации полимеров определяют температурно-частотные зависимости компонент комплексной диэлектрической проницаемости. При этом Б соответствии с принципом ТВЭ можно проводить измерения в режиме изменения температуры с малой по сравнению с изменением т скоростью при фиксированной частоте внешнего электрического поля (скорость изменения температуры образца 19 град/мин). Другой вариант сводится к фиксации температуры образца и вариации частоты внешнего электрического поля. Второй случай экспериментально осуществим труднее, так как требуется аппаратура охватывающая широкий интервал частот, однако он по очевидным причинам предпочтительнее. В этом случае непосредственно реализуется миграция стрелки действия, что открывает возможность строгого расчета некоторых параметров, характеризующих релаксационный процесс таких, например, как полная величина поглощения (ест — е ) или параметр распределения [c.239]


    Интенсивными параметрами называют характеристики системы, не зависящие от количества рассматриваемой фазы (температура, давление, плотность, диэлектрическая проницаемость и т. д.). Параметры системы, значение которых зависит от количественной характеристики фазы, называют экстенсивными (масса, внутренняя энергия, энтропия и т. п.). В так называемых идеальных смешанных фазах (газах или жидкостях) большинство экстенсивных параметров аддитивно. К экстенсивным параметрам вещества относятся также все функции состояния z (в том числе те, которые определены далее). Можно записать [c.215]

    Большое количество работ было посвящено рассмотрению тех изменений, которые происходят в свойствах жидкости на границе раздела фаз в электрическом поле двойного слоя. Градиент электрического поля в области двойного слоя довольно велик и оценивается величиной порядка 10 в см. В этих условиях такие важные с точки зрения электрокинетики параметры жидкости, как диэлектрическая проницаемость и вязкость, входящие в электрокинетические формулы для вычисления величины -потенци-ала, могут существенно изменить свое значение по сравнению со значениями для свободной жидкости, находящейся вне пределов двойного слоя. Результаты этих работ будут изложены в данном курсе позднее, при рассмотрении отдельных электрокинетических явлений, поскольку этот вопрос тесно связан с представлениями об их механизме. [c.46]

    Величина /Сз является функцией ряда параметров, характеризующих собственную силу кислотности (Ка) или основности (Къ) растворителя, его диэлектрическую проницаемость, полярность его молекул т и др.  [c.420]

    Зависимость диэлектрической проницаемости неполярных жидкостей от температуры и давления обусловлена главным образом тем, что с изменением этих параметров изменяется плотность системы. Как показывает эксперимент, диэлектрическая проницаемость жидкости с увеличением ее плотности возрастает. Исследование формы зависимости диэлектрической проницаемости от плотности тесно связано с изучением зависимости от плотности показателя преломления п, так как величины е и п, измеренные при одинаковых чистотах, связаны соотношением [c.211]

    Эта характеристика межмолекулярного сцепления связана в основном с такими параметрами жидкости, как дипольный момент х, поляризуемость а и диэлектрическая проницаемость е. [c.57]

    В этом случае взаимодействия внутри растворителя становятся величиной порядка ван-дер-ваальсовых сил, и, по всей вероятности, нельзя пренебрегать последними при рассмотрении взаимодействий диполь — растворитель и приписывать все изменение скорости диэлектрической проницаемости. Уравнение (XV.И.2) может применяться также для реакций между полярными молекулами в растворе [64]. Однако до сих пор не ясно, смогут ли эти уравнения быть использованы для изучения строения активированного комплекса или для дальнейшего развития теории растворов. (Автору кажется, что более детальная молекулярная модель раствора, учитывающая только взаимодействия между ближайшими соседними частицами, не так уж сложна, и она дала бы, вероятно, более интересные и полезные сведения. Параметрами в таком случае служили бы только дипольные моменты и радиусы молекул растворителя и растворенных частиц.) [c.458]

    Для исследования структуры и диэлектрических свойств сорбированной воды применяются различные физические и физико-химические методы, в частности диэлектрический метод. Сущность его заключается в измерении макроскопических характеристик поляризации диэлектрика во внешнем электрическом поле. В постоянном электрическом поле поляризация диэлектрика характеризуется статической диэлектрической проницаемостью Ез, в переменном — комплексной диэле1 трической проницаемостью е = е —ге". Установление связи между экспериментально определяемыми характеристиками е , е, г" и молекулярными параметрами диэлектрика является основной задачей теории диэлектрической поляризации [639, 640]. [c.242]

    Кинетика ТВЧ-сушки определяется электротеплофизическими характеристиками тела и режимными параметрами. Мощность внутреннего источника тепла зависит от напряженности поля, частоты и коэффициента (фактора) диэлектрических потерь, последний же зависит от частоты и влагосодержания [32]. Влияние частоты на коэффициент k = ttgb (где б-угол потерь е - диэлектрическая проницаемость) показано на рис. 7.8. В области низких частот VI большее количество тепла выделяется в материалах, содержащих капиллярную влагу (линии I), чем в материале 2 с адсорбционно связанной влагой. При большей частоте 2> 1 наблюдается обратная закономерность. Указанные особенности приводят к технологическим возможностям локального избирательного нагрева материалов. [c.166]

    Расчет физико-химических параметров реакций комплексо-образования посредством измеренных физических свойств — диэлектрической проницаемости и плотности (диэлектрометрия), оптической плотности (снектрофотометрия), химического сдвига (ЯМР), количества выделившегося тепла (калориметрия), температуры замерзания (криоскопия) [83]. [c.130]

    Относительная скорость дрейфа частиц при высоких температурах и давлениях находится в зависимости от ряда параметров. Они рассматриваются в виде эффективного потенциала (рассмотрен в предыдущем разделе) из уравнения (Х.43), поправочного коэффициента Канингхэма С [уравнение (IV.30)] и вязкость газа [уравнение (IV.31) и Приложения]. Прочие факторы (диэлектрическая проницаемость и диаметр частиц) не подвержены значительным изменениям под влиянием температуры и давления. Влияние температуры в воздухе при атмосферном давлении было-рассмотрено Трингом и Страусом [834], а расчетная относительная скорость дрейфа для ряда частиц показана на рис. Х-30. Влияние как высокого давления (или плотности), так и температуры для частиц ВеО в сжатом диоксиде углерода рассматривалось Ланкастером и Страусом [829]. Результаты этих расчетов приведены на рис. Х-31 (исходя из условия, что скорость дрейфа частицы с радиусом 1 мкм в условиях окружающей среды составляет 100 единиц в единицу времени например, 100 см/с в поле KVp=1000). [c.498]

    С увеличением размера пор е-пот.енциал сначала увеличивается, а затем, достигнув максимума, уменьшается. Рост -по-тенциала с увеличением размера пор в некотором диапазоне объясняется количественным изменением таких параметров, как вязкость, диэлектрическая проницаемость и электрическая проводимость. Некоторые исследователи считают, что с уменьшением размера пор ниже определенных пределов вязкость увеличивается, однако этот вопрос до конца еще не решен. Диэлектрическая проницаемость, по данным ряда исследователей, в двойном слое намного меньше диэлектрической ироницаемостп жидкости в свободном состоянии. Значения е, полученные, например, для воды в двойном слое, находятся в пределах 2—8. Пока не достигнуто определенной ясности в этом вопросе, нет основания исключать влияние е на увеличение е-пот.енциала с увеличением размера пор до определенных значений. Наконец, последняя величина, которая может вызвать изменение -потенциала от размера пор,— это электрическая проводимость. Электрическая проводимость раствора в порах отличается от ее значения для свободной жидкости. При соизмеримости в поре свободного пространства с толщиной двойного электрического слоя электрическая [c.114]

    Существует несколько теорий, в которых рассматривается диэлектрическая проницаемость чистых жидкостей, например, теории Кирвуда (1939) и фройлиха (1949). Полученные ими теоретические выражения содержат параметры, которые отражают взаимодействие между молекулами и влияние молекул, препятствующее ориентации соседних молекул. Поэтому без подробных данных о структуре жидкостей в смеси эти выражения использовать нельзя. [c.404]

    Под сиектрофотометрическим и потенциометрическим титрованием понимается комбинированный метод физико-химического исследования, позволяющий одновременно контролировать и регистрировать происходящие в системе изменения оптической плотности и электродного потенциала, характеризующего величину pH, электропроводности, окислительно-восстановительного потенциала п других свойств системы. Одной из интересных и перспективных особенностей метода является возможность получения информации о поведении системы ири фиксированных значениях параметров pH, диэлектрической проницаемости, ионной силы и т. и. [c.274]

    Диэлектрическая проницаемость влияет на скорость реакции между одноименными и разноименными ионами (см. гл. XX). В воде расстояние захвата между разноименными ионами близко к ац. Кинетические параметры реакций, которые удалось провести и в газах, и в различных растворителях, оказались близкими. Такие реакции получили название нормальных. Однако давно выделен класс медленно идущих реакций (реакции Меншуткина) между га-логеналкилами и триалкиламинами, например СаНз + + (С2Н5)зМ —>- (С2Н5)4М1. Скорость этой реакции сильно зависит от природы растворителя, например, при переходе от гексана к нитробензолу она растет в 1,3-10 раза. [c.227]

    Величина поверхностного натяжения является мерой интенсивности молекулярно-силового поля в поверхностном слое. Поскольку поверхностное натяжение является результатом нескомпенсированности меясмолекулярного взаимодействия в разных фазах, оно определяется разностью интеисивности взаимодействия молекул внутри каждой фазы (когезии) и взаимодействия молекул различных фаз (адгезии). Интенсивность молекулярных взаимодействий внутри ф .зы в теории поверхностных явлений обычно обозначают термином полярность . Полярность вещества в очень больш(л1 степени связана с такими ее параметрами, как дипольный момент молекул, диэлектрическая проницаемость, поляризуемость молекул, способность к образованию водородной связи меясду молекулами. Существенную роль играют также плотность (молярный объем) вещества, геометрия строения ьолекул, ориентация молекул в поверхностном слое, определяющая направление силовых полей, возможная взаимная растворимость граничащих фаз, их химическое взаимодействие. [c.189]

    Сравнивая оба метода высокочастотного титрования с помощью с-ячейки по ее активной и реактивной компоненте полной проводимости, следует подчеркнуть, что первый из них целесообразно применять, когда ожидается преимущественное изменение активной составляющей импеданса ячейки и образца. С другой стороны, титрование по реактивной компоненте может дать лучшие результаты в случае значительного прироста диэлектрической проницаемости, т. е. при диэлкометрическом титровании. От выбора участка характеристической кривой, в интервале которого происходит изменение параметров исследуемого раствора, зависит точность и чувствительность метода титрования. Последние зависят также от однозначности положения точки эквивалентности на характеристической кривой и от качества графических построений, проводимых при обработке данных эксперимента. [c.128]

    Все электрохимические методы анализа основаны на процессах, происходящих на электродах или в межэлектродном пространстве. При этом возникает или изменяется ряд параметров системы, например потенциал, ток, количество электричества, полное сопротивление, емкость, электропроводность или диэлектрическая проницаемость, значения которых поропорцио-нальны концентрациям определяемых веществ или определяются их специфическими свойствами. Эти зависимости можно использовать для количественного и качественного определения веществ. Существует множество способов комбинации задаваемых и измеряемых величин путем изменения условий анализа, откуда следует большое число применяемых методов. Однако имеется много противоречий в классификации и номенклатуре этих методов. [c.96]

    Из соотношения (УП1.28) следует, что при увеличении заряда ионов расстояние, на котором они начинают взаимодействовать, увеличивается. Наоборот, при увеличении диэлектрической проницаемости растворителя сила электростатического взаимодействия между ионами уменьшается в В раз. Поэтому полярные растворители, характеризующиеся большим значением диэлектрической проницаемости, способствуют образованию растворов с малой склонностью к возникновению ионных пар. Даже на сравнительно малых расстояниях взаимодействием ионов можно пренебречь д мал по величине), поэтому ионы можно считать практически изолированными. При увеличении температуры, как следует из (УП1.28), параметр Бьёррума q уменьшается и взаимодействие между ионами ослабляется на меньших расстояниях, что объясняется возрастанием энергии теплового движения ионов. Параметр Бьёррума имеет вполне определенное значение для каждого растворителя при заданных температуре и заряде ионов. Например, для однозарядных ионов в воде (2+ = 2 =1) при 25° С = 298 К [c.260]

    Величина а (измеряемая непосредственно и используемая обычно чаще, чем ) — также важнейшая молекулярная константа (при 7 = onst), характеризующая полярность жидкости. В учении о поверхностных явлениях термином полярность обозначают интенсивность поля молекулярных сил. Эта характеристика межмолекулярного сцепления связана, в основном, с такими параметрами жидкости, как дипольный момент ц, поляризуемость а и диэлектрическая проницаемость е. [c.58]


Смотреть страницы где упоминается термин Диэлектрическая проницаемость параметр: [c.9]    [c.269]    [c.96]    [c.454]    [c.494]    [c.201]    [c.9]    [c.52]    [c.206]    [c.445]    [c.253]    [c.131]    [c.235]    [c.559]    [c.561]    [c.236]    [c.273]   
Кинетика реакций в жидкой фазе (1973) -- [ c.308 , c.310 , c.314 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая проницаемост и параметр растворимости

Диэлектрическая проницаемость

Моделирование структуры воды по термодинамическим параметрам и диэлектрической проницаемости нормальных парафинов

Параметр растворимости и диэлектрическая проницаемость

Термодинамические и активационные параметры влияние температуры, диэлектрической проницаемости и ионной силы



© 2024 chem21.info Реклама на сайте